992 resultados para Integral Transform


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Exact multinomial solutions of the beach equation for shallow water waves on a uniformly sloping beach are found and related to solution of the same equation found earlier by other investigators, using integral transform techniques. The use of these solutions for a general initialvalue problem for the equation under investigation is briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complete analytical solution is obtained, by using an integral transform method, for the porous-wavemaker problem, when the effect of surface tension is taken into account on the free surface of water of finite-depth in which surface waves are produced by small horizontal oscillations of a porous vertical plate. The final results are expressed in the form of convergent integrals as well as series and known results are reproduced when surface tension is neglected.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a modified Green's function technique the two well-known basic problems of scattering of surface water waves by vertical barriers are reduced to the problem of solving a pair of uncoupled integral equations involving the “jump” and “sum” of the limiting values of the velocity potential on the two sides of the barriers in each case. These integral equations are then solved, in closed form, by the aid of an integral transform technique involving a general trigonometric kernel as applicable to the problems associated with a radiation condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The subject under investigation concerns the steady surface wave patterns created by small concentrated disturbances acting on a non-uniform flow of a heavy fluid. The initial value problem of a point disturbance in a primary flow having an arbitrary velocity distribution (U(y), 0, 0) in a direction parallel to the undisturbed free surface is formulated. A geometric optics method and the classical integral transformation method are employed as two different methods of solution for this problem. Whenever necessary, the special case of linear shear (i.e. U(y) = 1+ϵy)) is chosen for the purpose of facilitating the final integration of the solution.

The asymptotic form of the solution obtained by the method of integral transforms agrees with the leading terms of the solution obtained by geometric optics when the latter is expanded in powers of small ϵ r.

The overall effect of the shear is to confine the wave field on the downstream side of the disturbance to a region which is smaller than the wave region in the case of uniform flows. If U(y) vanishes, and changes sign at a critical plane y = ycr (e.g. ϵycr = -1 for the case of linear shear), then the boundary of this asymmetric wave field approaches this critical vertical plane. On this boundary the wave crests are all perpendicular to the x-axis, indicating that waves are reflected at this boundary.

Inside the wave field, as in the case of a point disturbance in a uniform primary flow, there exist two wave systems. The loci of constant phases (such as the crests or troughs) of these wave systems are not symmetric with respect to the x-axis. The geometric optics method and the integral transform method yield the same result of these loci for the special case of U(y) = Uo(1 + ϵy) and for large Kr (ϵr ˂˂ 1 ˂˂ Kr).

An expression for the variation of the amplitude of the waves in the wave field is obtained by the integral transform method. This is in the form of an expansion in small ϵr. The zeroth order is identical to the expression for the uniform stream case and is thus not applicable near the boundary of the wave region because it becomes infinite in that neighborhood. Throughout this investigation the viscous terms in the equations of motion are neglected, a reasonable assumption which can be justified when the wavelengths of the resulting waves are sufficiently large.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelos de evolução populacional são há muito tempo assunto de grande relevância, principalmente quando a população de estudo é composta por vetores de doenças. Tal importância se deve ao fato de existirem milhares de doenças que são propagadas por espécies específicas e conhecer como tais populações se comportam é vital quando pretende-se criar políticas públicas para controlar a sua proliferação. Este trabalho descreve um problema de evolução populacional difusivo com armadilhas locais e tempo de reprodução atrasado, o problema direto descreve a densidade de uma população uma vez conhecidos os parâmetros do modelo onde sua solução é obtida por meio da técnica de transformada integral generalizada, uma técnica numérico-analítica. Porém a solução do problema direto, por si só, não permite a simulação computacional de uma população em uma aplicação prática, uma vez que os parâmetros do modelo variam de população para população e precisam, portanto, ter seus valores conhecidos. Com o objetivo de possibilitar esta caracterização, o presente trabalho propõe a formulação e solução do problema inverso, estimando os parâmetros do modelo a partir de dados da população utilizando para tal tarefa dois métodos Bayesianos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

When a thin rectangular plate is restrained on the two long edges and free on the remaining edges, the equivalent stiffness of the restraining joints can be identified by the order of the natural frequencies obtained using the free response of the plate at a single location. This work presents a method to identify the equivalent stiffness of the restraining joints, being represented as simply supporting the plate but elastically restraining it in rotation. An integral transform is used to map the autospectrum of the free response from the frequency domain to the stiffness domain in order to identify the equivalent torsional stiffness of the restrained edges of the plate and also the order of natural frequencies. The kernel of the integral transform is built interpolating data from a finite element model of the plate. The method introduced in this paper can also be applied to plates or shells with different shapes and boundary conditions. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new wave retrieval method for the Along-Track Interferometric Synthetic Aperture Radar (AT-InSAR) phase image is presented. The new algorithm, named parametric retrieval algorithm (PRA), uses the full nonlinear mapping relations. It differs from previous retrieval algorithms in that it does not require a priori information about the sea state or the wind vector from scatterometer data. Instead, it combines the observed AT-InSAR phase spectrum and assumed wind vector to estimate the wind sea spectrum. The method has been validated using several C-band and X-band HH-polarized AT-InSAR observations collocated with spectral buoy measurements. In this paper, X-band and C-band HH-polarized AT-InSAR phase images of ocean waves are first used to study AT-InSAR wave imaging fidelity. The resulting phase spectra are quantitatively compared with forward-mapped in situ directional wave spectra collocated with the AT-InSAR observations. Subsequently, we combine the parametric retrieval algorithm (PRA) with X-band and C-band HH-polarized AT-InSAR phase images to retrieve ocean wave spectra. The results show that the ocean wavelengths, wave directions, and significant wave heights estimated from the retrieved ocean wave spectra are in agreement with the buoy measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new nonlinear integral transform of ocean wave spectra into Along-Track Interferometric Synthetic Aperture Radar (ATI-SAR) image spectra is described. ATI-SAR phase image spectra are calculated for various sea states and radar configurations based on the nonlinear integral transform. The numerical simulations show that the slant range to velocity ratio (R/V), significant wave height to ocean wavelength ratio (H-s/lambda), the baseline (2B) and incident angle (theta) affect ATI-SAR imaging. The ATI-SAR imaging theory is validated by means of Two X-band, HH-polarized ATI-SAR phase images of ocean waves and eight C-band, HH-polarized ATI-SAR phase image spectra of ocean waves. It is shown that ATI-SAR phase image spectra are in agreement with those calculated by forward mapping in situ directional wave spectra collected simultaneously with available ATI-SAR observations. ATI-SAR spectral correlation coefficients between observed and simulated are greater than 0.6 and are not sensitive to the degree of nonlinearity. However, the ATI-SAR phase image spectral turns towards the range direction, even if the real ocean wave direction is 30 degrees. It is also shown that the ATI-SAR imaging mechanism is significantly affected by the degree of velocity bunching nonlinearity, especially for high values of R/V and H-s/lambda.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the last several decades, due to the fast development of computer, numerical simulation has been an indispensable tool in scientific research. Numerical simulation methods which based on partial difference operators such as Finite Difference Method (FDM) and Finite Element Method (FEM) have been widely used. However, in the realm of seismology and seismic prospecting, one usually meets with geological models which have piece-wise heterogeneous structures as well as volume heterogeneities between layers, the continuity of displacement and stress across the irregular layers and seismic wave scattering induced by the perturbation of the volume usually bring in error when using conventional methods based on difference operators. The method discussed in this paper is based on elastic theory and integral theory. Seismic wave equation in the frequency domain is transformed into a generalized Lippmann-Schwinger equation, in which the seismic wavefield contributed by the background is expressed by the boundary integral equation and the scattering by the volume heterogeneities is considered. Boundary element-volume integral method based on this equation has advantages of Boundary Element Method (BEM), such as reducing one dimension of the model, explicit use the displacement and stress continuity across irregular interfaces, high precision, satisfying the boundary at infinite, etc. Also, this method could accurately simulate the seismic scattering by the volume heterogeneities. In this paper, the concrete Lippmann-Schwinger equation is specifically given according to the real geological models. Also, the complete coefficients of the non-smooth point for the integral equation are introduced. Because Boundary Element-Volume integral equation method uses fundamental solutions which are singular when the source point and the field are very close,both in the two dimensional and the three dimensional case, the treatment of the singular kernel affects the precision of this method. The method based on integral transform and integration by parts could treat the points on the boundary and inside the domain. It could transform the singular integral into an analytical one both in two dimensional and in three dimensional cases and thus it could eliminate the singularity. In order to analyze the elastic seismic wave scattering due to regional irregular topographies, the analytical solution for problems of this type is discussed and the analytical solution of P waves by multiple canyons is given. For the boundary reflection, the method used here is infinite boundary element absorbing boundary developed by a pervious researcher. The comparison between the analytical solutions and concrete numerical examples validate the efficiency of this method. We thoroughly discussed the sampling frequency in elastic wave simulation and find that, for a general case, three elements per wavelength is sufficient, however, when the problem is too complex, more elements per wavelength are necessary. Also, the seismic response in the frequency domain of the canyons with different types of random heterogeneities is illustrated. We analyzed the model of the random media, the horizontal and vertical correlation length, the standard deviation, and the dimensionless frequency how to affect the seismic wave amplification on the ground, and thus provide a basis for the choice of the parameter of random media during numerical simulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider evaluating the UK Monetary Policy Committee's inflation density forecasts using probability integral transform goodness-of-fit tests. These tests evaluate the whole forecast density. We also consider whether the probabilities assigned to inflation being in certain ranges are well calibrated, where the ranges are chosen to be those of particular relevance to the MPC, given its remit of maintaining inflation rates in a band around per annum. Finally, we discuss the decision-based approach to forecast evaluation in relation to the MPC forecasts

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Techniques are proposed for evaluating forecast probabilities of events. The tools are especially useful when, as in the case of the Survey of Professional Forecasters (SPF) expected probability distributions of inflation, recourse cannot be made to the method of construction in the evaluation of the forecasts. The tests of efficiency and conditional efficiency are applied to the forecast probabilities of events of interest derived from the SPF distributions, and supplement a whole-density evaluation of the SPF distributions based on the probability integral transform approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho e apresentado um avanço na tecnica GILTT(Generalized Integral and Laplace Transform Technique) solucionando analiticamente um sistema de EDO's(Equações Diferenciais Ordinarias) de segunda ordem resultante da transformação pela GITT(Generalized Integral Transform Technique). Este tipo de problema usualmente aparece quando esta tecnica é aplicada na solução de problemas bidimensionais estacionários. A principal idéia consiste na redução de ordem do problema transformado em outro sistema de EDO's lineares de primeira ordem e a solução analítica deste problema, pela técnica da transformada de Laplace. Como exemplo de aplicação é resolvida a equação da energia linear bidimensional e estacionária. São apresentadas simulações numéricas e comparações com resultados disponíveis na literatura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neste trabalho é apresentada uma solução analítica de um problema bidimensional e transiente de dispersão de poluentes atmosféricos. O modelamento utilizado é conhecido na literatura como modelo Kzz para dispersão de poluentes atmosféricos e é representado por uma equação difusivo-advectiva com coeficientes de difusão e advecção variáveis. São utilizados três diferentes coeficientes de difusão nas simulações, bem como as componentes horizontal e vertical do vento são tomadas como variáveis. A solução analítica é gerada através da aplicação da técnica GITT (Generalized Integral Transform Technique) dupla com problema transformado resolvido por Transformada de Laplace e diagonalização de matrizes. Filtros matemáticos são usados para homogenizar as condições de contorno viabilizando o uso da técnica citada. Além disso, o tipo de filtro matemático utilizado permite a sensível diminuição do custo computacional. Resultados numéricos são obtidos e comparados com dados experimentais e outras soluções da literatura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Laminar forced convection inside tubes of various cross-section shapes is of interest in the design of a low Reynolds number heat exchanger apparatus. Heat transfer to thermally developing, hydrodynamically developed forced convection inside tubes of simple geometries such as a circular tube, parallel plate, or annular duct has been well studied in the literature and documented in various books, but for elliptical duct there are not much work done. The main assumption used in this work is a laminar flow of a power flow inside elliptical tube, under a boundary condition of first kind with constant physical properties and negligible axial heat diffusion (high Peclet number). To solve the thermally developing problem, we use the generalized integral transform technique (GITT), also known as Sturm-Liouville transform. Actually, such an integral transform is a generalization of the finite Fourier transform where the sine and cosine functions are replaced by more general sets of orthogonal functions. The axes are algebraically transformed from the Cartesian coordinate system to the elliptical coordinate system in order to avoid the irregular shape of the elliptical duct wall. The GITT is then applied to transform and solve the problem and to obtain the once unknown temperature field. Afterward, it is possible to compute and present the quantities of practical interest, such as the bulk fluid temperature, the local Nusselt number and the average Nusselt number for various cross-section aspect ratios. (C) 2006 Elsevier. SAS. All rights reserved.