993 resultados para Instrumental analysis
Resumo:
Includes bibliography.
Resumo:
In this Ph.D. project, original and innovative approaches for the quali-quantitative analysis of abuse substances, as well as therapeutic agents with abuse potential and related compounds were designed, developed and validated for application to different fields such as forensics, clinical and pharmaceutical. All the parameters involved in the developed analytical workflows were properly and accurately optimised, from sample collection to sample pretreatment up to the instrumental analysis. Advanced dried blood microsampling technologies have been developed, able of bringing several advantages to the method as a whole, such as significant reduction of solvent use, feasible storage and transportation conditions and enhancement of analyte stability. At the same time, the use of capillary blood allows to increase subject compliance and overall method applicability by exploiting such innovative technologies. Both biological and non-biological samples involved in this project were subjected to optimised pretreatment techniques developed ad-hoc for each target analyte, making also use of advanced microextraction techniques. Finally, original and advanced instrumental analytical methods have been developed based on high and ultra-high performance liquid chromatography (HPLC,UHPLC) coupled to different detection means (mainly mass spectrometry, but also electrochemical, and spectrophotometric detection for screening purpose), and on attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) for solid-state analysis. Each method has been designed to obtain highly selective, sensitive yet sustainable systems and has been validated according to international guidelines. All the methods developed herein proved to be suitable for the analysis of the compounds under investigation and may be useful tools in medicinal chemistry, pharmaceutical analysis, within clinical studies and forensic investigations.
Resumo:
The determination of acetic acid in vinegar adulterated sample using simultaneous potentiometric and condutometric titrations was used as an example of integrated experiment in instrumental analysis. An Excel® spreadsheet, which allows the entry of simultaneous data and the construction of the superimposed experimental curves (condutometric, potentiometric, first and second derivative potentiometric curve and, distribution diagrama of the acetic species as function of pH), was used as powerful tool to discuss the fundamental concepts involved in each technique and choose the best of them to quantify, without mutual interference, H3CCOOH and HCl in vinegar adulterated sample.
Resumo:
This paper describes an experiment to teach the principles of gas chromatography exploring the boiling points and polarities to explain the elution order of a series of alcohols, benzene and n-propanone, as well as to teach the response factor concept and the internal standard addition method. Retention times and response factors are used for qualitative identification and quantitative analysis of a hypothetical contamination source in a simulated water sample. The internal standard n-propanol is further used for quantification of benzene and n-butanol in the water sample. This experiment has been taught in the instrumental analysis course offered to chemistry and oceanography students.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
The concept of brewing science is very recent when compared with the history of beer. It began with the microscopic observations of Louis Pasteur and evolved through the last century with improvements in engineering, microbiology, and instrumental analysis. However, the most profound insight into brewing processes only emerged in the past decades through the advances in molecular biology and genetic engineering. These techniques allowed scientists to not only affirm their experiences and past findings, but also to clarify a vast number of links between cellular structures and their role within the metabolic pathways in yeast. This chapter is therefore dedicated to the behavior of the brewing yeast during fermentation. The discussion puts together the recent findings in the core carbon and nitrogen metabolism of the model yeast Saccharomyces cerevisiae and their fermentation performance.
Resumo:
La determinació de Cr(VI) en l’aigua per espectroscòpia d’absorció molecular a la regió visible es realitza mitjançant una tècnica colorimètrica per reacció amb un reactiu cromogènic. El Cr(VI) reacciona amb la 1,5-Difenilcarbacida formant un complex de color vermell-violeta que absorbeix radiació a la longitud d’ona de 540 nm. Tradicionalment, la determinació de Cr(VI) per colorimetria es realitza de forma manual i discontínua, essent un mètode repetitiu i laboriós que té implícit un cost de mà d’obra i de temps considerable, tant pel que es refereix a la preparació de les mostres i dels patrons, com al propi acte de la mesura a l’aparell. Aquest projecte s’ha realitzat sota la idea que les determinacions de Cr(VI) per colorimetria, poden complir els requisits bàsics operacionals dels mètodes d’anàlisi de flux en continu. Partint d’aquesta base, s’ha desenvolupat un nou equip de mesura per realitzar les determinacions de Cr(VI) amb una presa de mostres automatitzada, i un règim de treball en continu. L’objectiu d’aquest projecte és la posta a punt, automatització, i validació de la tècnica d’anàlisi instrumental de determinació de crom (VI) en continu per espectroscòpia molecular visible
Resumo:
One of the main problems in transmission electron microscopy in thebiological field is the tri-dimensionality. This article explains the technicalprocedures and requirements to prepare biological specimens preserving themclosest to their native state to perform 3D reconstruction of the macromolecularcomplexes and cellular structures in their natural environment.
Resumo:
Surface Plasmon Resonance (SPR) technology is a powerful tool for studying a wide range of different putative interactions. This kind of optical biosensors allow to obtain (in real time and without labelling)quantitative and qualitative information about the kinetics of the surfacebindingprocess. The most critical points to keep in mind when using the technique are presented, as well as practical examples of applications.
Resumo:
Ionising radiation (IR) applications are quiet common among several areas of knowledge, medicine or industry. Medical X-rays, Nuclear Medicine, Xrays used in non-destructive testing or applications in research are a few examples. These radiations originate from radioactive materials or radiation emitting devices. Radiation Protection education and training (E&T) is of paramount importance to work safely in areas that imply the use of IR. TheTechnical Unit for Radiation Protection at the University of Barcelona has anextensive expertise in basic, initial and refresher training, in general or specificareas, as well as in courses validated by the Spanish Nuclear Safety Council orto satisfy specific needs with bespoke courses. These specific customer needsare evaluated and on-site courses can also be carried out.
Resumo:
Scintillation counting is one of the most important developments in the application of radioisotopes to procedures needed by scientists, physicians, engineers, and technicians from many diverse discipline for the detection and quantitative measurement of radioactivity. In fact, Scintillation is the most sensitive and versatile technique for the detection and quantification ofradioactivity. Particularly, Solid and Liquid scintillation measurement are,nowadays, standard laboratory methods in the life-sciences for measuringradiation from gamma- and beta-emitting nuclides, respectively. Thismethodology is used routinely in the vast majority of diagnostic and/or researchlaboratories from those of biochemistry and biology to clinical departments.
Resumo:
Although the radiation doses involved in basic research radiology are relatively small, the increasing number of radiological procedures makes risks becoming increasingly high. Quality control techniques in radiological practice have to ensure an adequate system of protection for people exposed to radiation. These techniques belong to a quality assurance program for X-ray machines and are designed to correct problems related to equipment and radiological practices, to obtain radiological images of high quality and to reduce the unnecessary exposures.
Resumo:
We review the key topics of one of the areas with the biggest impact of the last years in the chemical and pharmaceutical industry that is Crystal Engineering. The relevance of polymorphs and co-crystals from different points of view is been highlighted and broadly illustrated by means of several recent examples of studies carried out in this field. In addition, the most suitableinstrumental techniques and the intellectual property implications are reviewed.
Resumo:
Podeu consultar el llibre complet a: http://hdl.handle.net/2445/32166
Resumo:
This article summarizes the basic principles of Fourier Transform Infrared Spectroscopy, with examples of methodologies and applications to different field sciences.