933 resultados para Inoculated plants
Resumo:
Difficulties in reproducing the citrus variegated chlorosis (CVC) disease symptoms in expertmental plants have delayed implementation of studies to better understand the essential aspects of this important disease. In an extensive Study, cultivars of sweet orange (Citrus sinensis) were inoculated with Xylella fastidiosa using procedures that included root immersion, and stein absorption, pricking, or infiltration of the inoculum into plants of different ages. Inoculum consisted of 5-day-old cultures or cell suspensions of CVC strain 9a5c diluted in phosphate-buffered saline. Inoculated plants and controls were grown, or transferred just after inoculation, to 5-liter pots or 72-cell foam trays. Approximately 4, 5, 9, and 12 months after inoculation, leaves were collected and processed for polymerase chain reaction analysis or X. fastidiosa isolation on BCYE agar medium. Root immersion and stem inoculation of 4- and 6-month-old plants resulted in low percentages of symptomatic (0 to 7%) and plants positive by isolation (0 to 9%). Pinpricked or injected stems of I-month-old seedlings resulted in high percentages of plants symptomatic (29 and 90% in Pera Rio, 75, 59, and 83% in Valencia, and 77% in Natal) or positive by isolation (26 and 93% in Pera Rio, 98, 96, and 83% in Valencia, and 77% in Natal), In foam trays, the seedlings grew less, the incubation period was shorter. and disease severity was higher than in pots. This system allows testing of higher numbers of plants in a reduced space with a more precise reproduction of the experimental conditions.
Resumo:
Citrus variegated chlorosis (CVC) and coffee leaf scorch (CLS) are two economically important diseases in Brazil caused by the bacterium Xylella fastidiosa. Strains of the bacterium isolated from the two plant hosts are very closely related, and the two diseases share sharpshooter insect vectors. In order to determine if citrus strains of X. fastidiosa could infect coffee and induce CLS disease, plant inoculations were performed. Plants of coffee, Coffea arabica 'Mundo Novo', grafted on Coffea canephora var, robusta 'Apuatao 2258' were mechanically inoculated with triply cloned strains of X. fastidiosa isolated from diseased coffee and citrus. Three months postinoculation, 5 of the 10 plants inoculated with CLS-X. fastidiosa and 1 of the 10 plants inoculated with CVC-X. fastidiosa gave positive enzyme-linked immunosorbent assay (ELISA) and/or polymerase chain reaction (PCR). Eight months postinoculation, another six plants inoculated with CVC-X. fastidiosa gave positive PCR results. The two X. fastidiosa strains were isolated from the inoculated plants and showed the same characteristics as the original clones by microscopy, ELISA, and PCR. None of the plants inoculated with sterile periwinkle wilt (PW) medium as controls gave positive reactions in diagnostic tests, and none developed disease symptoms. Six months postinoculation, seven plants inoculated with CLS-X. fastidiosn and eight inoculated with CVC-X. fastidiosa began to develop characteristic CLS symptoms, including apical and marginal leaf scorch, defoliation, and reductions of internode length, leaf size, and plant height, terminal clusters of small chlorotic and deformed leaves, and lateral shoot dieback. We have demonstrated that X, fastidiosa from citrus plants is pathogenic for coffee plants. This has important consequences for the management of CLS disease and has implications for the origin of citrus variegated chlorosis disease.
Resumo:
Xylella fastidiosa causes citrus variegated chlorosis (CVC). Information generated from the X. fastidiosa genome project is being used to study the underlying mechanisms responsible for pathogenicity. However, the lack of an experimental host other than citrus to study plant-X. fastidiosa interaction has been an obstacle to accelerated progress in this area. We present here results of three experiments that demonstrated that tobacco could be an important experimental host for X. fastidiosa. All tobacco plants inoculated with a citrus strain of X. fastidiosa expressed unequivocal symptoms, consisting of orange leaf lesions, approximately 2 months after injection of the pathogen. CVC symptoms were observed in citrus 3 to 6 months after inoculation. The pathogen was readily detected in symptomatic tobacco plants by polymerase chain reaction (PCR) and phase contrast microscopy. In addition, X. fastidiosa was reisolated on agar plates in 4 of 10 plants. Scanning electron microscopy analysis of cross sections of stems and petioles revealed the presence of rod shaped bacteria restricted to the xylem of inoculated plants. The cell size was within the limit typical of X. fastidiosa.
Resumo:
Citrus variegated chlorosis (CVC), a citrus disease first discovered in Brazil in 1987, is caused by the bacterium Xylella fastidiosa and transmitted by sharpshooters and budwood. Since the disease affects almost all sweet orange cultivars, it has become one of the most serious problems for Brazilian citriculture. To evaluate their resistance to CVC disease, fifteen tangerines or mandarins (C. reticulata Blanco) and their hybrids were grafted on Rangpur lime (C. limonia Osb.) and inoculated with CVC-contaminated Pera sweet orange (C. sinensis (L.) Osb.) by twig grafting in a greenhouse. Tangerines and their hybrids Wilking, Fortune, Sunki, Ellendale, Orlando tangelo, Nunes clementine, Nova, Sun Shu Sha Kat, Suenkat, and Batangas showed CVC leaf symptoms and gave positive results on enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR) (with specific primers for X. fastidiosa), indicating that they are susceptible to CVC. Although X. fastidiosa bacteria were detected by ELISA and PCR in inoculated plants of tangerines Cravo and Oneco, no CVC leaf symptoms were observed on these two cultivars, suggesting that they are tolerant to the disease. CVC leaf symptoms were not observed and X. fastidiosa was not detected in tangerine Dancy and mandarins Okitsu satsuma and Ponkan after inoculation, showing that they are resistant to the disease.
Resumo:
Eucalyptus is the most important plantation forest species in Brazil. Wilt and canker caused by Ceratocystis fimbriata on eucalyptus were first reported in 1998 in plantations of an E. grandis × E. urophylla hybrid in southern Bahia, Brazil. This work aimed at studying the reaction of different eucalyptus genotypes after inoculation with C. fimbriata isolates, in order to find a possible source of resistance. The study included four isolates of Ceratocystis collected from eucalyptus in different regions. One disc of fungal mycelium with 1-cm-diameter (from colonies growing for 10 days on malt extract agar medium-MEA) was inoculated on the stem of thus injured eucalyptus plants (six months old). A cotton wool moistened with sterile distilled water was wrapped with plastic film. Control plants were inoculated with discs of MEA without fungal colonies. The inoculated plants were kept in a greenhouse. Wilt symptoms were observed 90 days after inoculation. The seedlings were cut in the longitudinal direction of the stem in order to observe the colonization of fungus in the plant xylem. We tested twenty eucalyptus genotypes, but only five showed resistance to all isolates of Ceratocystis, belonging to different species of Eucalyptus: E. urophylla (C2 and C9), E. grandis (C3), E. saligna (C6 and C13) Most E. gramdis genotypes were more susceptible to all four fungal isolates. These results support future studies related to eucalyptus resistance to Ceratocystis.
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Comportamento de genótipos de alface com o alelo mo10 ao Lettuce mosaic virus e Lettuce mottle virus
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Estudou-se o efeito da inoculação com fungo micorrízico arbuscular (FMA), Glomus etunicatum, Glomus clarum, ou Scutelospora heterogama, e da adição de fósforo solúvel (15, 30, 45, 60, 120 e 240 mg de P kg-1 de terra) sobre as variáveis altura, número de folhas, diâmetro do caule, massas vegetais aérea e radicular, teores de nutrientes nas folhas e colonização micorrízica no porta-enxerto limoeiro Cravo (Citrus limonia (L.) Osbeck). Os FMAs, Glomus etunicatum e Glomus clarum, e doses crescentes de fósforo exerceram efeitos significativos sobre essas variáveis. O efeito da inoculação sobre as variáveis de crescimento vegetal foi mais acentuado nos tratamentos com adição de 30 a 60 mg de P kg-1 de terra. Para o teor de P foliar, o efeito da inoculação foi mais acentuado nos tratamentos adicionados de 120 a 240 mg de P kg-1 de terra. A inoculação com estes FMAs aumentou a eficiência do limoeiro Cravo em absorver nutrientes, tanto que as variáveis estudadas em plantas inoculadas na ausência de adubação fosfática superaram às de plantas não inoculadas em substrato adicionado de 240 mg de P kg-1 de terra.
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Transgenic Citrus sinensis (L.) Osb. plants, cvs. Valencia and Hamlin, expressing Citrus tristeza virus (CTV) derived sequences were obtained by genetic transformation. The gene constructs were pCTV-CP containing the 25 kDa major capsid protein gene (CTV-CP), pCTV-dsCP containing the same CTV-CP gene in an intron-spliced hairpin construct, and pCTV-CS containing a 559 nt conserved region of the CTV genome. The transgenic lines were identified by PCR and the transgene integration was confirmed by Southern blot. Transgene mRNA could be detected in most transgenic lines containing pCTV-CP or pCTV-CS transgene. The mRNA of pCTV-dsCP transgene was almost undetectable, with very light bands in most analyzed plants. The transgene transcription appears to be closely linked to the type of gene construct. The virus challenge assays reveals that all transgenic lines were infected. However, it was possible to identify propagated clones of transgenic plants of both cultivars studied with a low virus titer, with values similar to the non-inoculated plants (negative control). These results suggested that the transgenic plants present some level of resistance to virus replication. The higher number of clones with low virus titer and where mRNA could not be detected or was presented in a very light band was found for pCTV-dsCP-derived transgenic lines.
Resumo:
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.
Resumo:
A Sebacinales species was recovered from a clone library made from a pooled rhizosphere sample of Nicotiana attenuata plants from 14 native populations. Axenic cultures of the related species, Piriformospora indica and Sebacina vermifera, were used to examine their effects on plant performance. Inoculation of N. attenuata seeds with either fungus species stimulated seed germination and increased growth and stalk elongation. S. vermifera inoculated plants flowered earlier, produced more flowers and matured more seed capsules than did non-inoculated plants. Jasmonate treatment during rosette-stage growth, which slows growth and elicits herbivore resistance traits, erased differences in vegetative, but not reproductive performance resulting from S. vermifera inoculation. Total nitrogen and phosphorous contents did not differ between inoculated and control plants, suggesting that the performance benefits of fungal inoculation did not result from improvements in nutritional status. Since the expression of trypsin proteinase inhibitors (TPI), defensive proteins which confer resistance to attack from Manduca sexta larvae, incur significant growth and fitness costs for the plant, we examined the effect of S. vermifera inoculation on herbivore resistance and TPI activity. After 10 days of feeding on S. vermifera-inoculated plants, larval mass was 46% higher and TPI activity was 48% lower than that on non-inoculated plants. These results suggest that Sebacina spp. may interfere with defense signaling and allow plants to increase growth rates at the expense of herbivore resistance mediated by TPIs.