967 resultados para Innate Immune-system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARYThe innate immune system plays a central role in host defenses against invading pathogens. Innate immune cells sense the presence of pathogens through pattern recognition receptors that trigger intracellular signaling, leading to the production of pro-inflammatory mediators like cytokines, which shape innate and adaptive immune responses. Both by excess and by default inflammation may be detrimental to the host. Indeed, severe sepsis and septic shock are lethal complications of infections characterized by a dysregulated inflammatory response.In recent years, members of the superfamily of histone deacetylases have been the focus of great interest. In mammals, histone deacetylases are broadly classified into two main subfamilies comprising histone deacetylases 1-11 (HDAC1-11) and sirtuins 1-7 (SIRT1-7). These enzymes influence gene expression by deacetylating histones and numerous non-histone proteins. Histone deacetylases have been involved in the development of oncologic, metabolic, cardiovascular, neurodegenerative and autoimmune diseases. Pharmacological modulators of histone deacetylase activity, principally inhibitors, have been developed for the treatment of cancer and metabolic diseases. When we initiated this project, several studies suggested that inhibitors of HDAC 1-11 have anti-inflammatory activity. Yet, their influence on innate immune responses was largely uncharacterized. The present study was initiated to fill in this gap.In the first part of this work, we report the first comprehensive study of the effects of HDAC 1- 11 inhibitors on innate immune responses in vitro and in vivo. Strikingly, expression studies revealed that HDAC1-11 inhibitors act essentially as negative regulators of basal and microbial product- induced expression of critical immune receptors and antimicrobial products by mouse and human innate immune cells like macrophages and dendritic cells. Furthermore, we describe a new molecular mechanism whereby HDAC1-11 inhibitors repress pro-inflammatory cytokine expression through the induction of the expression and the activity of the transcriptional repressor Μί-2β. HDAC1-11 inhibitors also impair the potential of macrophages to engulf and kill bacteria. Finally, mice treated with an HDAC inhibitor are more susceptible to non-severe bacterial and fungal infection, but are protected against toxic and septic shock. Altogether these data support the concept that HDAC 1-11 inhibitors have potent anti-inflammatory and immunomodulatory activities in vitro and in vivo.Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a central role in innate immune responses, cell proliferation and oncogenesis. In the second part of this manuscript, we demonstrate that HDAC1-11 inhibitors inhibit MIF expression in vitro and in vivo and describe a novel molecular mechanism accounting for these effects. We propose that inhibition of MIF expression by HDAC 1-11 inhibitors may contribute to the antitumorigenic and anti-inflammatory effects of these drugs.NAD+ is an essential cofactor of sirtuins activity and one of the major sources of energy within the cells. Therefore, sirtuins link deacetylation to NAD+ metabolism and energy status. In the last part of this thesis, we report preliminary results indicating that a pharmacological inhibitor of SIRT1-2 drastically decreases pro-inflammatory cytokine production (RNA and protein) and interferes with MAP kinase intracellular signal transduction pathway in macrophages. Moreover, administration of the SIRT1-2 inhibitor protects mice from lethal endotoxic shock and septic shock.Overall, our studies demonstrate that inhibitors of HDAC1-11 and sirtuins are powerful anti-inflammatory molecules. Given their profound negative impact on the host antimicrobial defence response, these inhibitors might increase the susceptibility to opportunistic infections, especially in immunocompromised cancer patients. Yet, these inhibitors might be useful to control the inflammatory response in severely ill septic patients or in patients suffering from chronic inflammatory diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : A large body of evidence indicates that the innate immune system plays a key role in host response to viral infection. Recently, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptor receptors (NLRs) have emerged as key innate immune sensors of microbial products, eliciting intracellular signaling and leading to the production of chemokines, cytokines and interferons (IFNs) that shape innate immune responses and coordinate the development of adaptive immunity. Poxviruses are currently developed as vaccines vectors for infectious diseases such as HIV, tuberculosis and malaria. Modified vaccinia virus Ankara (MVA) and New York vaccinia virus (NWAC) are attenuated, replication deficient strains of poxvirus. The mechanisms underlying innate immune responses to MVA and NYVAC are poorly characterized. Thus, the objectives of the project were to determine the innate immune profile stimulated by poxviruses in innate immune cells and to evaluate the impact of modifications in the viral genome on MVA and NYVAC immunogenicity. MVA stimulated the production of abundant amounts of chemokines and IFNß but low levels of cytokines by human macrophages. In contrast, NYVAC weakly stimulated the production of all mediators. Interestingly, MVA and NYVAC strongly stimulated innate immune responses in vivo and in human whole blood, suggesting that a soluble factors}, possibly a complement component, was required for optimal activation of innate immune cells by poxviruses. Modified MVA and NYVAC produced by single or multiple deletions of viral genes targeting crucial pathways of host innate immunity, and mutant poxviruses with limited replication capacity, increased the production of pro-inflammatory molecules by human whole blood. Gene expression profiling in human macrophages confirmed the increased immunologic stimulatory capacity of modified poxviruses. The pathways activated by MVA and NYVAC in innate immune cells were described by analysing the response of knockdown or shRNA transduced macrophages with impaired expression of TLRs and their adaptors (MyD8$ and TRIF), RLRs (RIG-I, MDA-5 and the adaptor IPS-1) and the NALP3 inflammasome composed óf the NLR NALP3, caspase-1 and ASC. These experiments revealed a critical role for TLR2-TLR6-MyD88 in the production of tFNß-independent chemokines and of MDA-5-IPS-1 in the production of IFNß and IFNßdependent chemokines. The transcription of the iL1b gene encoding for the IL-1ß cytokine was initiated through TLR2-MyD88, whereas the maturation and the secretion of IL-1ß were controlled by the NALP3 inflammasome. Finally, we analyzed the role of macrophage migration inhibitory factor (MIF), a mediator of inflammation and innate immune responses, in MVA infection. We observed that MVA infection increased MIF production by innate immune cells and that MIF deficiency impaired macrophage and dendritic cell responses (ie migration, maturation, cytokine and IFN production) to MVA infection in vitro and in vivo. Moreover, MIF-deficiency resulted in delayed anti-MVA specific antibody production in mice immunized with the virus. In conclusion, we demonstrate. that poxviruses can be modified genetically to improve their immunogenicity. We also report the first comprehensive analysis of poxvirus sensing by innate immune cells, showing that the TLR, RLR and NLR pathways play specific and coordinated roles in regulating cytokine, chemokine and IFN response to poxvirus infection. Finally, we show that MIF is an integral host component involved in innate and adaptive immune responses to MVA infection. The present findings provide important information relevant to the study of the pathogenesis of poxvirus infections and allow a better understanding of the immunogenic potential of vaccine vectors, which is required for the development of optimized modìfied pox-vaccine vectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Newborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, and Escherichia coli and group B Streptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-κB pathway but not the mitogen-activated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenovirus is a nonenveloped dsDNA virus that activates intracellular innate immune pathways. In vivo, adenovirus-immunized mice displayed an enhanced innate immune response and diminished virus-mediated gene delivery following challenge with the adenovirus vector AdLacZ suggesting that antiviral Abs modulate viral interactions with innate immune cells. Under naive serum conditions in vitro, adenovirus binding and internalization in macrophages and the subsequent activation of innate immune mechanisms were inefficient. In contrast to the neutralizing effect observed in nonhematopoietic cells, adenovirus infection in the presence of antiviral Abs significantly increased FcR-dependent viral internalization in macrophages. In direct correlation with the increased viral internalization, antiviral Abs amplified the innate immune response to adenovirus as determined by the expression of NF-kappaB-dependent genes, type I IFNs, and caspase-dependent IL-1beta maturation. Immune serum amplified TLR9-independent type I IFN expression and enhanced NLRP3-dependent IL-1beta maturation in response to adenovirus, confirming that antiviral Abs specifically amplify intracellular innate pathways. In the presence of Abs, confocal microscopy demonstrated increased targeting of adenovirus to LAMP1-positive phagolysosomes in macrophages but not epithelial cells. These data show that antiviral Abs subvert natural viral tropism and target the adenovirus to phagolysosomes and the intracellular innate immune system in macrophages. Furthermore, these results illustrate a cross-talk where the adaptive immune system positively regulates the innate immune system and the antiviral state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The innate immune system recognizes nucleic acids during infection and tissue damage. Whereas viral RNA is detected by endosomal toll-like receptors (TLR3, TLR7, TLR8) and cytoplasmic RIG-I and MDA5, endosomal TLR9 and cytoplasmic DAI bind DNA, resulting in the activation of nuclear factor-kappaB and interferon regulatory factor transcription factors. However, viruses also trigger pro-inflammatory responses, which remain poorly defined. Here we show that internalized adenoviral DNA induces maturation of pro-interleukin-1beta in macrophages, which is dependent on NALP3 and ASC, components of the innate cytosolic molecular complex termed the inflammasome. Correspondingly, NALP3- and ASC-deficient mice display reduced innate inflammatory responses to adenovirus particles. Inflammasome activation also occurs as a result of transfected cytosolic bacterial, viral and mammalian (host) DNA, but in this case sensing is dependent on ASC but not NALP3. The DNA-sensing pro-inflammatory pathway functions independently of TLRs and interferon regulatory factors. Thus, in addition to viral and bacterial components or danger signals in general, inflammasomes sense potentially dangerous cytoplasmic DNA, strengthening their central role in innate immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le virus de l’hépatite C (VHC) est un virus à ARN simple brin positif (ssARN) qui se replique dans le foie. Deux cents millions de personnes sont infectées par le virus dans le monde et environ 80% d’entre elles progresseront vers un stade chronique de l’infection. Les thérapies anti-virales actuelles comme l’interféron (IFN) ou la ribavirin sont de plus en plus utilisées mais ne sont efficaces que dans la moitié des individus traités et sont souvent accompagnées d’une toxicité ou d’effets secondaires indésirables. Le système immunitaire inné est essentiel au contrôle des infections virales. Les réponses immunitaires innées sont activées suite à la reconnaissance par les Pathogen Recognition Receptors (PRRs), de motifs macromoléculaires dérivés du virus appelés Pathogen-Associated Molecular Patterns (PAMPs). Bien que l'activation du système immunitaire par l'ARN ou les protéines du VHC ait été largement étudiée, très peu de choses sont actuellement connues concernant la détection du virus par le système immunitaire inné. Et même si l’on peut très rapidement déceler des réponses immunes in vivo après infection par le VHC, l’augmentation progressive et continue de la charge virale met en évidence une incapacité du système immunitaire à contrôler l’infection virale. Une meilleure compréhension des mécanismes d’activation du système immunitaire par le VHC semble, par conséquent, essentielle au développement de stratégies antivirales plus efficaces. Dans le présent travail nous montrons, dans un modèle de cellule primaire, que le génome ARN du VHC contient des séquences riches en GU capables de stimuler spécifiquement les récepteurs de type Toll (TLR) 7 et 8. Cette stimulation a pour conséquence la maturation des cellules dendritiques plasmacytoïdes (pDCs), le production d’interféron de type I (IFN) ainsi que l’induction de chémokines et cytokines inflammatoires par les différentes types de cellules présentatrices d’antigènes (APCs). Les cytokines produites après stimulation de monocytes ou de pDCs par ces séquences ssARN virales, inhibent la production du virus de façon dépendante de l’IFN. En revanche, les cytokines produites après stimulation de cellules dendritiques myéloïdes (mDCs) ou de macrophages par ces mêmes séquences n’ont pas d’effet inhibiteur sur la production virale car les séquences ssARN virales n’induisent pas la production d’IFN par ces cellules. Les cytokines produites après stimulation des TLR 7/8 ont également pour effet de diminuer, de façon indépendante de l’IFN, l’expression du récepteur au VHC (CD81) sur la lignée cellulaire Huh7.5, ce qui pourrait avoir pour conséquence de restreindre l’infection par le VHC. Quoiqu’il en soit, même si les récepteurs au VHC comme le CD81 sont largement exprimés à la surface de différentes sous populations lymphocytaires, les DCs et les monocytes ne répondent pas aux VHC, Nos résultats indiquent que seuls les macrophages sont capables de reconnaître le VHC et de produire des cytokines inflammatoires en réponse à ce dernier. La reconnaissance du VHC par les macrophages est liée à l’expression membranaire de DC-SIGN et l’engagement des TLR 7/8 qui en résulte. Comme d’autres agonistes du TLR 7/8, le VHC stimule la production de cytokines inflammatoires (TNF-α, IL-8, IL-6 et IL-1b) mais n’induit pas la production d’interféron-beta par les macrophages. De manière attendue, la production de cytokines par des macrophages stimulés par les ligands du TLR 7/8 ou les séquences ssARN virales n’inhibent pas la réplication virale. Nos résultats mettent en évidence la capacité des séquences ssARN dérivées du VHC à stimuler les TLR 7/8 dans différentes populations de DC et à initier une réponse immunitaire innée qui aboutit à la suppression de la réplication virale de façon dépendante de l’IFN. Quoiqu’il en soit, le VHC est capable d’échapper à sa reconnaissance par les monocytes et les DCs qui ont le potentiel pour produire de l’IFN et inhiber la réplication virale après engagement des TLR 7/8. Les macrophages possèdent quant à eux la capacité de reconnaître le VHC grâce en partie à l’expression de DC-SIGN à leur surface, mais n’inhibent pas la réplication du virus car ils ne produisent pas d’IFN. L’échappement du VHC aux défenses antivirales pourrait ainsi expliquer l’échec du système immunitaire inné à contrôler l’infection par le VHC. De plus, la production de cytokines inflammatoires observée après stimulation in vitro des macrophages par le VHC suggère leur potentielle contribution dans l’inflammation que l’on retrouve chez les individus infectés par le VHC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune system faces a considerable challenge in its efforts to maintain tissue homeostasis in the intestinal mucosa. It is constantly confronted with a large array of antigens, and has to prevent the dissemination and proliferation of potentially harmful agents while sparing the vital structures of the intestine from immune-mediated destruction. Complex interactions between the highly adapted effector cells and mechanisms of the innate and adaptive immune system generally prevent the luminal microflora from penetrating the intestinal mucosa and from spreading systemically. Non-haematopoietic cells critically contribute to the maintenance of local tissue homeostasis in an antigen-rich environment by producing protective factors (e.g. production of mucus by goblet cells, or secretion of microbicidal defensins by Paneth cells) and also through interactions with the adaptive and innate immune system (such as the production of chemotactic factors that lead to the selective recruitment of immune cell subsets). The complexity of the regulatory mechanisms that control the local immune response to luminal antigens is also reflected in the observation that mutations in immunologically relevant genes often lead to the development of uncontrolled inflammatory reactions in the microbially colonized intestine of experimental animals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animals persistently infected (PI) with bovine viral diarrhea virus (BVDV) retain a strain-specific B- and T-cell immunotolerance. Pestiviral RNA triggers interferon (IFN) synthesis, and the viral RNase E(rns) inhibits IFN expression induced by extracellular viral RNA. In addition, N(pro) promotes the degradation of the transcription factor IRF-3, which effectively blocks IFN expression in BVDV-infected cells. As not all the potential target cells are infected in PI animals, these are 'chimeric' with respect to BVDV. This suggests that N(pro) and E(rns) are non-redundant IFN antagonists that act in infected and non-infected cells, respectively. Moreover, E(rns) may take a paradoxical function, both as virulence as well as "attenuation" factor: The former by preventing the activation of the innate and, consequently, of the adaptive immune system, the latter by minimizing the detrimental effects of systemic IFN production. Thus, BVDV maintains "self-tolerance" by avoiding the induction of IFN while itself being largely resistant to it without, however, interfering with the IFN action against unrelated viruses ('nonself'). This unique extension of 'self' to a virus suggests that the host's own RNases may have evolved as a guard against inadvertent activation of the innate immune system by host RNA, thus establishing a state of "innate tolerance".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spiders, as all other arthropods, have an open circulatory system, and their body fluid, the hemolymph, freely moves between lymphatic vessels and the body cavities (see Wirkner and Huckstorf 2013). The hemolymph can be considered as a multifunctional organ, central for locomotion (Kropf 2013), respiration (Burmester 2013) and nutrition, and it amounts to approximately 20 % of a spider’s body weight. Any injury includes not only immediate hemolymph loss but also pathogen attacks and subsequent infections. Therefore spiders have to react to injuries in a combined manner to stop fluid loss and to defend against microbial invaders. This is achieved by an innate immune system which involves several host defence systems such as hemolymph coagulation and the production of a variety of defensive substances (Fukuzawa et al.2008). In spiders, the immune system is localised in hemocytes which are derived from the myocardium cells of the heart wall where they are produced as prohemocytes and from where they are released as different cell types into the hemolymph (Seitz 1972). They contribute to the defence against pathogens by phagocytosis, nodulation and encapsulation of invaders. The humoral response includes mechanisms which induce melanin production to destroy pathogens, a clotting cascade to stop hemolymph loss and the constitutive production of several types of antimicrobial peptides, which are stored in hemocyte granules and released into the hemolymph (Fukuzawa et al.2008) (Fig.7.1). The immune system of spiders is an innate immune system. It is hemolymph-based and characterised by a broad but not very particular specificity. Its advantage is a fast response within minutes to a few hours. This is in contrast to the adaptive immune system of vertebrates which can react to very specific pathogens, thus resulting in much more specific responses. Moreover, it creates an immunological memory during the lifetime of the species. The disadvantage is that it needs more time to react with antibody production, usually many hours to a few days, and needs to be built up during early ontogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immune system is perhaps the largest yet most diffuse and distributed somatic system in vertebrates. It plays vital roles in fighting infection and in the homeostatic control of chronic disease. As such, the immune system in both pathological and healthy states is a prime target for therapeutic interventions by drugs-both small-molecule and biologic. Comprising both the innate and adaptive immune systems, human immunity is awash with potential unexploited molecular targets. Key examples include the pattern recognition receptors of the innate immune system and the major histocompatibility complex of the adaptive immune system. Moreover, the immune system is also the source of many current and, hopefully, future drugs, of which the prime example is the monoclonal antibody, the most exciting and profitable type of present-day drug moiety. This brief review explores the identity and synergies of the hierarchy of drug targets represented by the human immune system, with particular emphasis on the emerging paradigm of systems pharmacology. © the authors, publisher and licensee Libertas Academica Limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimmunomodulation describes the field focused on understanding the mechanisms by which the central nervous system interacts with the immune system, potentially leading to changes in animal behavior. Nonetheless, not many articles dealing with neuroimmunomodulation employ behavior as an analytical endpoint. Even fewer papers deal with social status as a possible modifier of neuroimmune phenomena. In the described sets of experiments, we tackle both, using a paradigm of social dominance and subordination. We first review data on the effects of different ranks within a stable hierarchical relationship. Submissive mice in this condition display more anxiety-like behaviors, have decreased innate immunity, and show a decreased resistance to implantation and development of melanoma metastases in their lungs. This suggests that even in a stable, social, hierarchical rank, submissive animals may be subjected to higher levels of stress, with putative biological relevance to host susceptibility to disease. Second, we review data on how dominant and submissive mice respond differentially to lipopolysaccharide (LPS), employing a motivational perspective to sickness behavior. Dominant animals display decreased number and frequency in several aspects of behavior, particularly agonistic social interaction, that is, directed toward the submissive cage mate. This was not observed in submissive mice that maintained the required behavior expected by its dominant mate. Expression of sickness behavior relies on motivational reorganization of priorities, which are different along different social ranks, leading to diverse outcomes. We suggest that in vitro assessment of neuroimmune phenomena can only be understood based on the behavioral context in which they occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Viral infections can be a major thread for the central nervous system (CNS), therefore, the immune system must be able to mount a highly proportionate immune response, not too weak, which would allow the virus to proliferate, but not too strong either, to avoid collateral damages. Here, we aim at reviewing the immunological mechanisms involved in the host defense in viral CNS infections. First, we review the specificities of the innate as well as the adaptive immune responses in the CNS, using several examples of various viral encephalitis. Then, we focus on three different modes of interactions between viruses and immune responses, namely human Herpes virus-1 encephalitis with the defect in innate immune response which favors this disease; JC virus-caused progressive multifocal leukoencephalopathy and the crucial role of adaptive immune response in this example; and finally, HIV infection with the accompanying low grade chronic inflammation in the CNS in some patients, which may be an explanation for the presence of cognitive disorders, even in some well-treated HIV-infected patients. We also emphasize that, although the immune response is generally associated with viral replication control and limited cellular death, an exaggerated inflammatory reaction can lead to tissue damage and can be detrimental for the host, a feature of the immune reconstitution inflammatory syndrome (IRIS). We will briefly address the indication of steroids in this situation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma cruzi infection triggers substantial production of nitric oxide (NO), which has been shown to have protective and toxic effects on the host's immune system. Sensing of trypomastigotes by phagocytes activates the inducible NO-synthase (NOS2) pathway, which produces NO and is largely responsible for macrophage-mediated killing of T. cruzi. NO is also responsible for modulating virtually all steps of innate and adaptive immunity. However, NO can also cause oxidative stress, which is especially damaging to the host due to increased tissue damage. The cytokines IFN-³ and TNF-±, as well as chemokines, are strong inducers of NOS2 and are produced in large amounts during T. cruzi acute infection. Conversely, TGF-² and IL-10 negatively regulate NO production. Here we discuss the recent evidence describing the mechanisms by which NO is able to exert its antimicrobial and immune regulatory effects, the mechanisms involved in the oxidative stress response during infection and the implications of NO for the development of therapeutic strategies against T. cruzi.