931 resultados para Injection molding of plastics


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, labon- a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1,2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT microstructures, significantly increases the packing density of CNTs. This process enables directed transformation of vertical CNT microstructures into straight, inclined, and twisted shapes, which have robust mechanical properties exceeding those of typical microfabrication polymers. This in turn enables formation of nanocomposite CNT master molds by capillary-driven infiltration of polymers. The replica structures exhibit the anisotropic nanoscale texture of the aligned CNTs, and can have walls with sub-micron thickness and aspect ratios exceeding 50:1. Integration of CNT microstructures in fabrication offers further opportunity to exploit the electrical and thermal properties of CNTs, and diverse capabilities for chemical and biochemical functionalization 3. © 2012 Journal of Visualized Experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to reduce the influence of the stray electric field of the buncher in the axial injection system of SFC and to improve the injection efficiency of SFC, the existing buncher electrode is investigated and a new electrode is designed. The influences of the electric field to the beams for the both cases are simulated. The simulation results show that the bunching efficiency is improved from 55% to 74% with the new electrode. At the same time, the influence of the space charge is computed and according to the results, the location of the buncher is readjusted too.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A flow injection method has been developed for the determination of dopamine based on its inhibition of the electrochemiluminescence of luminol. This method is simple and sensitive for dopamine detection. Under the selected experimental conditions, the decreased electrochemiluminescent intensity is linear with dopamine concentration in the range of 5.0 x 10(-8)-1.0 x 10(-5) mol/L with a detection limit of 30 nmol/L. The relative standard deviation of eleven determinations is 1.9% for 1.0 x 10(-6) mol/L dopamine. The proposed method has been applied to the detection of dopamine in pharmaceutical injections with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental parameters, the working range for histidine was in 1.0 x 10(-6) to 1.0 x 10(-3) mol/L with a detection limit (S/N = 3) of 0.56 mumol/L. The relative standard deviation was 1.6% for 11 measurements of 5 x 10(-5) mol/L histidine solution. The proposed method has been successfully applied to the determination of histidine in real pharmaceutical preparation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

G chemically modified electrode (CME) was prepared by electrochemical copolymerization of pyrrole and Methylene Blue. The resulting CME exhibits effective electrocatalytic activity towards the oxidation of reduced nicotinamide coenzymes (NADH and NADPH),

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.