995 resultados para Ingeniería naval
Resumo:
Information on the pivot point of a turning ship is collected, taking into account practical notes and manuals on ship maneuvering as well as experimental data and simulated results which all together reveal a consistent behavior when varying water depth or some ship particulars. Results from the studies already carried out on the Riverine Support Patrol Vessel (RSPV) of the Colombian Navy are included in this one, in order to estimate the pivot point’s position and to contrast those results with theory and available empirical observations. Linear manoeuvrability theory is tested and its results show poor approximation with respect to the kinematic equations. As to the depth variation effect, by means of fullscale experiments it is confirmed that the pivot point’s position, when going to shallow water, always varies in the same way, proving to be coherent with the available information on this phenomenon.
Resumo:
TIPO DE BUQUE: Portacontenedores. CAPACIDAD DE CARGA: 1860 TEUs (200 refrigerados). PESO MUERTO: 22800 TPM. SOCIEDAD DE CLASIFICACIÓN: Lloyd’s Register. Cámara desatendida. REGLAMENTOS: Solas 2009, Marpol, Convenio de Líneas de Carga. VELOCIDAD: 22 nudos al 85% MCR en pruebas. AUTONOMÍA: 12000 millas al 85% MCR y 15% de margen de mar. TRIPULACIÓN: 27 personas.
Resumo:
TIPO DE BUQUE: Velero de competición capacitado para la regata alrededor del mundo “Volvo Ocean Race.” REGLAMENTOS: Reglas de la clase: Volvo Ocean 60 rule 2000 + changes CLASIFICACIÓN: ABS Guide for Building and Classing Offshore Racing Yachts 1994 incorporating Notice #1 DESPLAZAMIENTO MÁXIMO: 15000 KG CALADO MÁXIMO: 3.75 m ESLORA MÁXIMA: 23.5 m CONSTRUCCIÓN: Casco: Materiales compuestos. Mástil: materiales compuestos sin núcleo o aluminio. INSTALACIÓN ELÉCTRICA: 24V DC con un motor auxiliar y al menos dos alternadores independientes. SISTEMA DE PROPULSIÓN: Vela, aparejo tipo Sloop. Motor propulsivo de emergencia con hélice plegable de dos palas capaz de dar 7 nudos en condiciones de mar en calma ALOJAMIENTO: para 12 tripulantes REQUERIMIENTOS: Desaladora-potabilizadora, radar, GPS, GMDSS, comunicaciones por satélite Inmarsat B y C, sistema de gobierno de emergencia, calefacción, bombas de lastre, sistema de corrección de escora mediante tanques de lastre liquido.
Resumo:
Computer Fluid Dynamics tools have already become a valuable instrument for Naval Architects during the ship design process, thanks to their accuracy and the available computer power. Unfortunately, the development of RANSE codes, generally used when viscous effects play a major role in the flow, has not reached a mature stage, being the accuracy of the turbulence models and the free surface representation the most important sources of uncertainty. Another level of uncertainty is added when the simulations are carried out for unsteady flows, as those generally studied in seakeeping and maneuvering analysis and URANS equations solvers are used. Present work shows the applicability and the benefits derived from the use of new approaches for the turbulence modeling (Detached Eddy Simulation) and the free surface representation (Level Set) on the URANS equations solver CFDSHIP-Iowa. Compared to URANS, DES is expected to predict much broader frequency contents and behave better in flows where boundary layer separation plays a major role. Level Set methods are able to capture very complex free surface geometries, including breaking and overturning waves. The performance of these improvements is tested in set of fairly complex flows, generated by a Wigley hull at pure drift motion, with drift angle ranging from 10 to 60 degrees and at several Froude numbers to study the impact of its variation. Quantitative verification and validation are performed with the obtained results to guarantee their accuracy. The results show the capability of the CFDSHIP-Iowa code to carry out time-accurate simulations of complex flows of extreme unsteady ship maneuvers. The Level Set method is able to capture very complex geometries of the free surface and the use of DES in unsteady simulations highly improves the results obtained. Vortical structures and instabilities as a function of the drift angle and Fr are qualitatively identified. Overall analysis of the flow pattern shows a strong correlation between the vortical structures and free surface wave pattern. Karman-like vortex shedding is identified and the scaled St agrees well with the universal St value. Tip vortices are identified and the associated helical instabilities are analyzed. St using the hull length decreases with the increase of the distance along the vortex core (x), which is similar to results from other simulations. However, St scaled using distance along the vortex cores shows strong oscillations compared to almost constants for those previous simulations. The difference may be caused by the effect of the free-surface, grid resolution, and interaction between the tip vortex and other vortical structures, which needs further investigations. This study is exploratory in the sense that finer grids are desirable and experimental data is lacking for large α, especially for the local flow. More recently, high performance computational capability of CFDSHIP-Iowa V4 has been improved such that large scale computations are possible. DES for DTMB 5415 with bilge keels at α = 20º were conducted using three grids with 10M, 48M and 250M points. DES analysis for flows around KVLCC2 at α = 30º is analyzed using a 13M grid and compared with the results of DES on the 1.6M grid by. Both studies are consistent with what was concluded on grid resolution herein since dominant frequencies for shear-layer, Karman-like, horse-shoe and helical instabilities only show marginal variation on grid refinement. The penalties of using coarse grids are smaller frequency amplitude and less resolved TKE. Therefore finer grids should be used to improve V&V for resolving most of the active turbulent scales for all different Fr and α, which hopefully can be compared with additional EFD data for large α when it becomes available.
Resumo:
In a series of attempts to research and document relevant sloshing type phenomena, a series of experiments have been conducted. The aim of this paper is to describe the setup and data processing of such experiments. A sloshing tank is subjected to angular motion. As a result pressure registers are obtained at several locations, together with the motion data, torque and a collection of image and video information. The experimental rig and the data acquisition systems are described. Useful information for experimental sloshing research practitioners is provided. This information is related to the liquids used in the experiments, the dying techniques, tank building processes, synchronization of acquisition systems, etc. A new procedure for reconstructing experimental data, that takes into account experimental uncertainties, is presented. This procedure is based on a least squares spline approximation of the data. Based on a deterministic approach to the first sloshing wave impact event in a sloshing experiment, an uncertainty analysis procedure of the associated first pressure peak value is described.
Resumo:
Una alta productividad en Ingeniería está asociada entre otras cosas a una gestión eficiente del flujo de las enormes cantidades de información y correspondientes tomas de decisiones consubstanciales a los entornos de diseño y producción. Ello exige que nuestros titulados estén formados para ser capaces de manejar esa información de modo integrado, a través de los diferentes estadios en que se genera y procesa. En el contexto de la enseñanza de la Ingeniería existen un buen número de cursos designados a desarrollar competencias específicas, como las requeridas en los currículos académicos, pero muy pocos en los cuales las competencias de integración sean el objetivo principal. En este artículo se documenta una asignatura que tiene esa orientación, con la intención de alimentar el debate sobre la formación, tan necesario en tiempos de fuerte contracción de la actividad económica como el que vivimos en la actualidad y que está promoviendo el COIN. La asignatura se denomina “Tecnologías de la Información Aplicadas a la Construcción Naval” y es impartida en la titulación de Ingeniero Naval y Oceánico, plan 2002, de la Universidad Politécnica de Madrid (UPM). La primera parte de la asignatura está dedicada a la planificación y gestión de proyectos; los estudiantes adquieren competencias en la definición, usando Ms-PROJECT, de la estructura de descomposición de tareas y la asignación de recursos así como en el seguimiento de proyectos, a través de una serie de ejemplos de complejidad creciente, finalizando con la construcción de un buque. La segunda parte está dedicada al uso de un gestor de bases de datos, Ms-ACCESS, y orientada a la gestión de la información relativa a Producción. Otra vez la estrategia pasa por trabajar sobre una serie de ejemplos de complejidad creciente y se finaliza con la administración de una base de datos de tuberías de un buque, para las cuales se establecen hitos de producción, recepción y montaje, lo que conecta está parte con la primera. Finalmente, la tercera parte de la asignatura está dedicada al trabajo con FORAN, con el cual se definen con detalle los elementos estructurales de todo el buque sobre el que se ha elaborado la planificación. En esta parte, el trabajo es cooperativo, dado que los estudiantes operan simultáneamente en el mismo modelo 3D. Las clases se realizan en un aula multimedia en la cual cada estudiante puede utilizar todas las aplicaciones de software tratadas. Se han realizado encuestas a los estudiantes para obtener una retroalimentación desde su experiencia así como para hacer una valoración de su satisfacción con el proceso de aprendizaje. Los resultados de esas encuestas son discutidos en el artículo.
Resumo:
TIPO DE BUQUE: velero de competición IMOCA OPEN 60 CONSTRUCCIÓN: materiales compuestos ESLORA: LOA mayor de 59’ (17.938 m) y menor de 60’ (18.288) CALADO: máximo de 4.5 m CLASIFICACIÓN Y COTA: 2007 IMOCA Open60 Rule. ABS guide for building and classing offshore yachts. ISAF Offshore Special Regulations, category 0 VELOCIDAD A MOTOR: 8 nudos al 90% MCR SISTEMA DE PROPULSIÓN: motor diesel de potencia 37 CV. Hélice de 3 palas OTROS REQUERIMIENTOS: sólo competición, estudio del comportamiento en la mar en condiciones oceánicas. Insumergibilidad. Sistema de orza pivotante. Vela spinnaker asimétrica para vientos portantes
Resumo:
The implementation of boundary conditions is one of the points where the SPH methodology still has some work to do. The aim of the present work is to provide an in-depth analysis of the most representative mirroring techniques used in SPH to enforce boundary conditions (BC) along solid profiles. We specifically refer to dummy particles, ghost particles, and Takeda et al. [1] boundary integrals. A Pouseuille flow has been used as a example to gradually evaluate the accuracy of the different implementations. Our goal is to test the behavior of the second-order differential operator with the proposed boundary extensions when the smoothing length h and other dicretization parameters as dx/h tend simultaneously to zero. First, using a smoothed continuous approximation of the unidirectional Pouseuille problem, the evolution of the velocity profile has been studied focusing on the values of the velocity and the viscous shear at the boundaries, where the exact solution should be approximated as h decreases. Second, to evaluate the impact of the discretization of the problem, an Eulerian SPH discrete version of the former problem has been implemented and similar results have been monitored. Finally, for the sake of completeness, a 2D Lagrangian SPH implementation of the problem has been also studied to compare the consequences of the particle movement
Resumo:
This paper outlines the problems found in the parallelization of SPH (Smoothed Particle Hydrodynamics) algorithms using Graphics Processing Units. Different results of some parallel GPU implementations in terms of the speed-up and the scalability compared to the CPU sequential codes are shown. The most problematic stage in the GPU-SPH algorithms is the one responsible for locating neighboring particles and building the vectors where this information is stored, since these specific algorithms raise many dificulties for a data-level parallelization. Because of the fact that the neighbor location using linked lists does not show enough data-level parallelism, two new approaches have been pro- posed to minimize bank conflicts in the writing and subsequent reading of the neighbor lists. The first strategy proposes an efficient coordination between CPU-GPU, using GPU algorithms for those stages that allow a straight forward parallelization, and sequential CPU algorithms for those instructions that involve some kind of vector reduction. This coordination provides a relatively orderly reading of the neighbor lists in the interactions stage, achieving a speed-up factor of x47 in this stage. However, since the construction of the neighbor lists is quite expensive, it is achieved an overall speed-up of x41. The second strategy seeks to maximize the use of the GPU in the neighbor's location process by executing a specific vector sorting algorithm that allows some data-level parallelism. Al- though this strategy has succeeded in improving the speed-up on the stage of neighboring location, the global speed-up on the interactions stage falls, due to inefficient reading of the neighbor vectors. Some changes to these strategies are proposed, aimed at maximizing the computational load of the GPU and using the GPU texture-units, in order to reach the maximum speed-up for such codes. Different practical applications have been added to the mentioned GPU codes. First, the classical dam-break problem is studied. Second, the wave impact of the sloshing fluid contained in LNG vessel tanks is also simulated as a practical example of particle methods
Resumo:
Canonical test cases for sloshing wave impact problems are pre-sented and discussed. In these cases the experimental setup has been simpli?ed seeking the highest feasible repeatability; a rectangular tank subjected to harmonic roll motion has been the tested con?guration. Both lateral and roof impacts have been studied, since both cases are relevant in sloshing assessment and show speci?c dynamics. An analysis of the impact pressure of the ?rst four impact events is provided in all cases. It has been found that not in all cases a Gaussian ?tting of each individual peak is feasible. The tests have been conducted with both water and oil in order to obtain high and moderate Reynolds number data; the latter may be useful as simpler test cases to assess the capabilities of CFD codes in simulating sloshing impacts. The re-peatability of impact pressure values increases dramatically when using oil. In addition, a study of the two-dimensionality of the problem using a tank con?guration that can be adjusted to 4 di?erent thicknesses has been carried out. Though the kinemat-ics of the free surface does not change signi cantly in some of the cases, the impact pressure values of the ?rst impact events changes substantially from the small to the large aspect ratios thus meaning that attention has to be paid to this issue when reference data is used for validation of 2D and 3D CFD codes.
Resumo:
Las competiciones académicas han sido uno de los recursos utilizados por el proyecto europeo PROMARC, “Promoting Marine Research Careers”, con el fin de animar a la gente joven a buscar puestos de trabajo en la investigación y en la innovación en el sector de la tecnología marina. El proyecto liderado por la WEGEMT, Asociación Europea de Universidades del ámbito de la tecnología marina y ciencias afines, ha recogido la participación de ocho Universidades, tres Asociaciones Europeas y una Fundación. El diseño de ekranoplanos ha sido el centro de una de estas competiciones, finalizando con una serie de ensayos de los finalistas en el Canal de Ensayos Hidrodinámicos de la ETSI Navales de la Universidad Politécnica de Madrid. Después de una revisión de los objetivos y estructura del proyecto y del concepto de este tipo de artefactos, se describe la competición en sus aspectos principalmente técnicos, finalizando con los logros obtenidos
Resumo:
Se plantea la posible demanda en un futuro del transporte de grandes plataformas petrolíferas semisumergibles de más de 70.000 t de peso, para perforaciones a más de 10.000 pies de profundidad. Estudia la estabilidad de buques Heavy Lift Carrier con mangas atípicas, capaces de transportar estas cargas, y en algunos casos sobresaliendo por sus amuras. Para esto se: 1. Estudia y genera posibles carenas, su compartimentación y lastre para la inmersión o emersión de la cubierta de intemperie, a más de 10 m de profundidad para tomar o dejar la carga, optimizando el proceso. 2. Analiza la estabilidad del buque tanto en inmersión/emersión y navegación, con máximas cargas y con altos centros de gravedad, y establece ábacos de estabilidad límite en función de los parámetros del buque. 3. Plantea la corrección de estabilidad excesiva del buque en condiciones de navegación para evitar las excesivas aceleraciones. Los resultados obtenidos aportan ábacos que permiten, en función de los parámetros carga a transportar (Zg max) - Peso Carga), elegir el buque más adecuado, capaz de efectuar la inmersión, emersión, y navegación, y plantea acciones futuras de investigación. ABSTRACT This work raises the potential demand in the future, to transport large semisubmersible oil rigs over 70,000 tonnes of weight for drilling to 10,000 feet deep. Study vessel stability Heavy Lift Carrier with atypical breadths capable of carrying these burdens, and in some cases standing out for their bows. 1. Examines possible hulls, their partitioning and ballast for immersion or emersion of the weather deck, more than 10 m deep to take –loading (lifting) - or leave (off- loading). 2. Analyzes the stability of the vessel both immersion / emersion and navigation, with maximum loads with high centers of gravity and stability limit states abacus according to the parameters of the ship. 3. Correction raises the stability of the ship over navigation to prevent excessive accelerations. The results allow, in terms of cargo transport parameters (Zg max) - Weight Load), choosing the most suitable vessel capable of carrying out the immersion, emersion, and navigation, and suggests future research activities.
Resumo:
For many years now, sails have been used as a propulsion system. At present, they are restricted to recreational/sport crafts since the appearance of the first steam vessels in the beginning of the 19 th century. But in the last years, due to the increase of fuel price and the pollution of the environment, it is being studied the possibility to introduce again the sail as a propulsive method combined with other conventional systems. In this paper, it is studied the viability of using a sail as a propellant with other conventional systems of propulsion. After considering the concept of apparent wind, the range of use of this complementary propulsion is presented. The calculation methodology, the numerical simulations and the wind inputs from a specific route are also included.
Resumo:
Tipo de buque: Granelero de doble casco, cubierta corrida, castillo a proa. Habilitación y cámara de máquinas a popa, codaste abierto, proa y popa de bulbo y timón tipo Mariner. Clasificacion y cota: Bureau Veritas, AUT. Peso muerto: 50000 TPM. Propulsión/Velocidad: Motor 2T lento directamente acoplado a hélice de paso fijo. Velocidad en pruebas y plena carga con el motor al 100% MCR y 10% de margen de mar, 15 nudos. Autonomía/Capacidades: Capacidad de bodegas: 55000 m3. Capacidad de combustible: 2200 m3 (Tanques para contenidos de azufre de 4,5; 1,5 y 0,1%). Habilitación: 22 cabinas individuales con baño privado + rancho 6 personas. sistemas de carga: Sin medios de carga. Maquinaria auxiliar: 3 diesel generadores principales. Caldereta mixta gases/mecheros. Amarre: 2 molinetes combinados con maquinillas de amarre más 5 maquinillas dobles en cubierta. Todos los carreteles serán del tipo "Carretel partido"
Resumo:
Tipo de Buque: Car Carrier. Capacidad de carga: carga 1: 3000 coches sin trailers. Carga 2: Carga combinada para 1500 ml de trailers y coches en el resto de las cubiertas del buque no ocupadas por los trailers. Peso muerto 5800 TPM. Capacidad de conductores: 100 personas en camarotes dobles. Sociedad de clasificación: Det Norske Veritas. Reglamentos: Solas, Marpol, Convenio de líneas de carga. Velocidad: 19 nudos al 85% MCR en pruebas. Autonomía: 4500 millas al 80% MCR y 15% al margen de mar. Tripulación 25 personas.