987 resultados para Information fractal dimension


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: This study compared fractal dimension (FD) values on mandibular trabecular bone in digital and digitized images at different spatial and contrast resolutions. Materials and Methods: 12 radiographs of dried human mandibles were obtained using custom-fabricated hybrid image receptors composed of a periapical radiographic film and a photostimulable phosphor plate (PSP). The film/ PSP sets were disassembled, and the PSPs produced images with 600 dots per inch (dpi) and 16 bits. These images were exported as tagged image file format (TIFF), 16 and 8 bits, and 600, 300 and 150 dpi. The films were processed and digitized 3 times on a flatbed scanner, producing TIFF images with 600, 300 and 150 dpi, and 8 bits. On each image, a circular region of interest was selected on the trabecular alveolar bone, away from root apices and FD was calculated by tile counting method. Two-way ANOVA and Tukey’s test were conducted to compare the mean values of FD, according to image type and spatial resolution (α = 5%). Results: Spatial resolution was directly and inversely proportional to FD mean values and standard deviation, respectively. Spatial resolution of 150 dpi yielded significant lower mean values of FD than the resolutions of 600 and 300 dpi ( P < 0.05). A nonsignificant variability was observed for the image types ( P > 0.05). The interaction between type of image and level of spatial resolution was not signi fi cant (P > 0.05). Conclusion: Under the tested, conditions, FD values of the mandibular trabecular bone assessed either by digital or digitized images did not change. Furthermore, these values were in fluenced by lower spatial resolution but not by contrast resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757226]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Prostate cancer is a serious public health problem that affects quality of life and has a significant mortality rate. The aim of the present study was to quantify the fractal dimension and Shannon’s entropy in the histological diagnosis of prostate cancer. Methods: Thirty-four patients with prostate cancer aged 50 to 75 years having been submitted to radical prostatectomy participated in the study. Histological slides of normal (N), hyperplastic (H) and tumor (T) areas of the prostate were digitally photographed with three different magnifications (40x, 100x and 400x) and analyzed. The fractal dimension (FD), Shannon’s entropy (SE) and number of cell nuclei (NCN) in these areas were compared. Results: FD analysis demonstrated the following significant differences between groups: T vs. N and H vs. N groups (p < 0.05) at a magnification of 40x; T vs. N (p < 0.01) at 100x and H vs. N (p < 0.01) at 400x. SE analysis revealed the following significant differences groups: T vs. H and T vs. N (p < 0.05) at 100x; and T vs. H and T vs. N (p < 0.001) at 400x. NCN analysis demonstrated the following significant differences between groups: T vs. H and T vs. N (p < 0.05) at 40x; T vs. H and T vs. N (p < 0.0001) at 100x; and T vs. H and T vs. N (p < 0.01) at 400x. Conclusions: The quantification of the FD and SE, together with the number of cell nuclei, has potential clinical applications in the histological diagnosis of prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cerebral cortex presents self-similarity in a proper interval of spatial scales, a property typical of natural objects exhibiting fractal geometry. Its complexity therefore can be characterized by the value of its fractal dimension (FD). In the computation of this metric, it has usually been employed a frequentist approach to probability, with point estimator methods yielding only the optimal values of the FD. In our study, we aimed at retrieving a more complete evaluation of the FD by utilizing a Bayesian model for the linear regression analysis of the box-counting algorithm. We used T1-weighted MRI data of 86 healthy subjects (age 44.2 ± 17.1 years, mean ± standard deviation, 48% males) in order to gain insights into the confidence of our measure and investigate the relationship between mean Bayesian FD and age. Our approach yielded a stronger and significant (P < .001) correlation between mean Bayesian FD and age as compared to the previous implementation. Thus, our results make us suppose that the Bayesian FD is a more truthful estimation for the fractal dimension of the cerebral cortex compared to the frequentist FD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the information content of the chromosomes of 24 species. In a first phase, a scheme inspired in dynamical system state space representation is developed. For each chromosome the state space dynamical evolution is shed into a two dimensional chart. The plots are then analyzed and characterized in the perspective of fractal dimension. This information is integrated in two measures of the species’ complexity addressing its average and variability. The results are in close accordance with phylogenetics pointing quantitative aspects of the species’ genomic complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This contribution presents novel concepts for analysis of pressure–volume curves, which offer information about the time domain dynamics of the respiratory system. The aim is to verify whether a mapping of the respiratory diseases can be obtained, allowing analysis of (dis)similarities between the dynamical pattern in the breathing in children. The groups investigated here are children, diagnosed as healthy, asthmatic, and cystic fibrosis. The pressure–volume curves have been measured by means of the noninvasive forced oscillation technique during breathing at rest. The geometrical fractal dimension is extracted from the pressure–volume curves and a power-law behavior is observed in the data. The power-law model coefficients are identified from the three sets and the results show that significant differences are present between the groups. This conclusion supports the idea that the respiratory system changes with disease in terms of airway geometry, tissue parameters, leading in turn to variations in the fractal dimension of the respiratory tree and its dynamics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent investigation, Landsat TM and ETM+ data were used to simulate different resolutions of remotely-sensed images (from 30 to 1100 m) and to analyze the effect of resolution on a range of landscape metrics associated with spatial patterns of forest fragmentation in Chapare, Bolivia since the mid-1980s. Whereas most metrics were found to be highly dependent on pixel size, several fractal metrics (DLFD, MPFD, and AWMPFD) were apparently independent of image resolution, in contradiction with a sizeable body of literature indicating that fractal dimensions of natural objects depend strongly on image characteristics. The present re-analysis of the Chapare images, using two alternative algorithms routinely used for the evaluation of fractal dimensions, shows that the values of the box-counting and information fractal dimensions are systematically larger, sometimes by as much as 85%, than the "fractal" indices DLFD, MPFD, and AWMFD for the same images. In addition, the geometrical fractal features of the forest and non-forest patches in the Chapare region strongly depend on the resolution of images used in the analysis. The largest dependency on resolution occurs for the box-counting fractal dimension in the case of the non-forest patches in 1993, where the difference between the 30 and I 100 m-resolution images corresponds to 24% of the full theoretical range (1.0 to 2.0) of the mass fractal dimension. The observation that the indices DLFD, MPFD, and AWMPFD, unlike the classical fractal dimensions, appear relatively unaffected by resolution in the case of the Chapare images seems due essentially to the fact that these indices are based on a heuristic, "non-geometric" approach to fractals. Because of their lack of a foundation in fractal geometry, nothing guarantees that these indices will be resolution-independent in general. (C) 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radar reflectivity measurements from three different wavelengths are used to retrieve information about the shape of aggregate snowflakes in deep stratiform ice clouds. Dual-wavelength ratios are calculated for different shape models and compared to observations at 3, 35 and 94 GHz. It is demonstrated that many scattering models, including spherical and spheroidal models, do not adequately describe the aggregate snowflakes that are observed. The observations are consistent with fractal aggregate geometries generated by a physically-based aggregation model. It is demonstrated that the fractal dimension of large aggregates can be inferred directly from the radar data. Fractal dimensions close to 2 are retrieved, consistent with previous theoretical models and in-situ observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a novel approach in order to increase the recognition power of Multiscale Fractal Dimension (MFD) techniques, when applied to image classification. The proposal uses Functional Data Analysis (FDA) with the aim of enhancing the MFD technique precision achieving a more representative descriptors vector, capable of recognizing and characterizing more precisely objects in an image. FDA is applied to signatures extracted by using the Bouligand-Minkowsky MFD technique in the generation of a descriptors vector from them. For the evaluation of the obtained improvement, an experiment using two datasets of objects was carried out. A dataset was used of characters shapes (26 characters of the Latin alphabet) carrying different levels of controlled noise and a dataset of fish images contours. A comparison with the use of the well-known methods of Fourier and wavelets descriptors was performed with the aim of verifying the performance of FDA method. The descriptor vectors were submitted to Linear Discriminant Analysis (LDA) classification method and we compared the correctness rate in the classification process among the descriptors methods. The results demonstrate that FDA overcomes the literature methods (Fourier and wavelets) in the processing of information extracted from the MFD signature. In this way, the proposed method can be considered as an interesting choice for pattern recognition and image classification using fractal analysis.