979 resultados para Information Visualisation
Resumo:
In our large library of annotated environmental recordings of animal vocalizations, searching annotations by label can return thousands of results. We propose a heat map of aggregated annotation time and frequency bounds, maintaining the shape of the annotations as they appear on the spectrogram. This compactly displays the distribution of annotation bounds for the user's query, and allows them to easily identify unusual annotations. Key to this is allowing zero values on the map to be differentiated from areas where there are single annotations.
Resumo:
The scalability of a computer system is its response to growth. It is also depended on its hardware, its operating system and the applications it is running. Most distributed systems technology today still depends on bus-based shared memory which do not scale well, and systems based on the grid or hypercube scheme requires significantly less connections than a full inter-connection that would exhibit a quadratic growth rate. The rapid convergence of mobile communication, digital broadcasting and network infrastructures calls for rich multimedia content that is adaptive and responsive to the needs of individuals, businesses and the public organisations. This paper will discuss the emergence of mobile Multimedia systems and provides an overview of the issues regarding design and delivery of multimedia content to mobile devices.
Resumo:
The notion of time plays a vital and ubiquitous role of a common universal reference. In knowledge-based systems, temporal information is usually represented in terms of a collection of statements, together with the corresponding temporal reference. This paper introduces a visualized consistency checker for temporal reference. It allows expression of both absolute and relative temporal knowledge, and provides visual representation of temporal references in terms of directed and partially weighted graphs. Based on the temporal reference of a given scenario, the visualized checker can deliver a verdict to the user as to whether the scenario is temporally consistent or not, and provide the corresponding analysis / diagnosis.
Resumo:
Information technology in construction (ITC) has been gaining wide acceptance and is being implemented in the construction research domains as a tool to assist decision makers. Most of the research into visualization technologies (VT) has been on the wide range of 3D and simulation applications suitable for construction processes. Despite its development with interoperability and standardization of products, VT usage has remained very low when it comes to communicating and addressing the needs of building end-users (BEU). This paper argues that building end users are a source of experience and expertise that can be brought into the briefing stage for the evaluation of design proposals. It also suggests that the end user is a source of new ideas promoting innovation. In this research a positivistic methodology that includes the comparison of 3D models and the traditional 2D methods is proposed. It will help to identify "how much", if anything, a non-spatial specialist can gain in terms Of "understanding" of a particular design proposal presented, using both methods.
Resumo:
Exploratory tasks supported by visualization are usually improved by Coordinated and Multiple Views (CMV) of the data under study. Several coordination techniques have been proposed in the literature, resulting in a diversity of tools to generate mappings among the multiple views. These mappings can be highly dynamic, and their history reveals the settings employed in the multiple exploratory tasks conducted in a discovery process. Several solutions have been proposed to help users to recover the steps performed in exploratory tasks, but little support is found for registering the multiple coordination mappings employed. This paper provides a contribution in this direction, proposing a model for storing and recovering such mappings. We believe such a facility is an important feature of CMV systems, so that users can recover and rerun the coordinations performed when exploring their data. We present details of the proposed model and show some potential applications. © 2012 IEEE.
Resumo:
Le sfide dell'Information Visualisation ed i limiti dei sistemi di visualizzazione esistenti hanno portato alla creazione di un nuovo sistema per la generazione automatica di visualizzazioni di Open Data quantitativi, presentato in questa tesi.
Resumo:
Today, the data available to tackle many scientific challenges is vast in quantity and diverse in nature. The exploration of heterogeneous information spaces requires suitable mining algorithms as well as effective visual interfaces. miniDVMS v1.8 provides a flexible visual data mining framework which combines advanced projection algorithms developed in the machine learning domain and visual techniques developed in the information visualisation domain. The advantage of this interface is that the user is directly involved in the data mining process. Principled projection methods, such as generative topographic mapping (GTM) and hierarchical GTM (HGTM), are integrated with powerful visual techniques, such as magnification factors, directional curvatures, parallel coordinates, and user interaction facilities, to provide this integrated visual data mining framework. The software also supports conventional visualisation techniques such as principal component analysis (PCA), Neuroscale, and PhiVis. This user manual gives an overview of the purpose of the software tool, highlights some of the issues to be taken care while creating a new model, and provides information about how to install and use the tool. The user manual does not require the readers to have familiarity with the algorithms it implements. Basic computing skills are enough to operate the software.
Resumo:
This thesis introduces a flexible visual data exploration framework which combines advanced projection algorithms from the machine learning domain with visual representation techniques developed in the information visualisation domain to help a user to explore and understand effectively large multi-dimensional datasets. The advantage of such a framework to other techniques currently available to the domain experts is that the user is directly involved in the data mining process and advanced machine learning algorithms are employed for better projection. A hierarchical visualisation model guided by a domain expert allows them to obtain an informed segmentation of the input space. Two other components of this thesis exploit properties of these principled probabilistic projection algorithms to develop a guided mixture of local experts algorithm which provides robust prediction and a model to estimate feature saliency simultaneously with the training of a projection algorithm.Local models are useful since a single global model cannot capture the full variability of a heterogeneous data space such as the chemical space. Probabilistic hierarchical visualisation techniques provide an effective soft segmentation of an input space by a visualisation hierarchy whose leaf nodes represent different regions of the input space. We use this soft segmentation to develop a guided mixture of local experts (GME) algorithm which is appropriate for the heterogeneous datasets found in chemoinformatics problems. Moreover, in this approach the domain experts are more involved in the model development process which is suitable for an intuition and domain knowledge driven task such as drug discovery. We also derive a generative topographic mapping (GTM) based data visualisation approach which estimates feature saliency simultaneously with the training of a visualisation model.
Resumo:
The paper addresses issues related to the design of a graphical query mechanism that can act as an interface to any object-oriented database system (OODBS), in general, and the object model of ODMG 2.0, in particular. In the paper a brief literature survey of related work is given, and an analysis methodology that allows the evaluation of such languages is proposed. Moreover, the user's view level of a new graphical query language, namely GOQL (Graphical Object Query Language), for ODMG 2.0 is presented. The user's view level provides a graphical schema that does not contain any of the perplexing details of an object-oriented database schema, and it also provides a foundation for a graphical interface that can support ad-hoc queries for object-oriented database applications. We illustrate, using an example, the user's view level of GOQL
Resumo:
Due to the popularity of modern Collaborative Virtual Environments, there has been a related increase in their size and complexity. Developers therefore need visualisations that expose usage patterns from logged data, to understand the structures and dynamics of these complex environments. This chapter presents a new framework for the process of visualising virtual environment usage data. Major components, such as an event model, designer task model and data acquisition infrastructure are described. Interface and implementation factors are also developed, along with example visualisation techniques that make use of the new task and event model. A case study is performed to illustrate a typical scenario for the framework, and its benefits to the environment development team.
Resumo:
The evaluation of geospatial data quality and trustworthiness presents a major challenge to geospatial data users when making a dataset selection decision. The research presented here therefore focused on defining and developing a GEO label – a decision support mechanism to assist data users in efficient and effective geospatial dataset selection on the basis of quality, trustworthiness and fitness for use. This thesis thus presents six phases of research and development conducted to: (a) identify the informational aspects upon which users rely when assessing geospatial dataset quality and trustworthiness; (2) elicit initial user views on the GEO label role in supporting dataset comparison and selection; (3) evaluate prototype label visualisations; (4) develop a Web service to support GEO label generation; (5) develop a prototype GEO label-based dataset discovery and intercomparison decision support tool; and (6) evaluate the prototype tool in a controlled human-subject study. The results of the studies revealed, and subsequently confirmed, eight geospatial data informational aspects that were considered important by users when evaluating geospatial dataset quality and trustworthiness, namely: producer information, producer comments, lineage information, compliance with standards, quantitative quality information, user feedback, expert reviews, and citations information. Following an iterative user-centred design (UCD) approach, it was established that the GEO label should visually summarise availability and allow interrogation of these key informational aspects. A Web service was developed to support generation of dynamic GEO label representations and integrated into a number of real-world GIS applications. The service was also utilised in the development of the GEO LINC tool – a GEO label-based dataset discovery and intercomparison decision support tool. The results of the final evaluation study indicated that (a) the GEO label effectively communicates the availability of dataset quality and trustworthiness information and (b) GEO LINC successfully facilitates ‘at a glance’ dataset intercomparison and fitness for purpose-based dataset selection.