895 resultados para Inflammation Mediators
Resumo:
PURPOSE: To compare the effectiveness of mechanical ventilation of supine versus prone position in hydrochloric acid (HCl)-induced lung dysfunction. METHODS: Twenty, adult, male, Wistar-EPM-1 rats were anesthetized and randomly grouped (n=5 animals per group) as follows: CS-MV (mechanical ventilation in supine position); CP-MV (mechanical ventilation in prone position); bilateral instillation of HCl and mechanical ventilation in supine position (HCl+S); and bilateral instillation of HCl and mechanical ventilation in prone position (HCl+P). All groups were ventilated for 180 minutes. The blood partial pressures of oxygen and carbon dioxide were measured in the time points 0 (zero; 10 minutes before lung injury for stabilization), and at the end of times acid injury, 60, 120 and 180 minutes of mechanical ventilation. At the end of experiment the animals were euthanized, and bronchoalveolar lavages (BALs) were taken to determine the contents of total proteins, inflammatory mediators, and lungs wet-to-dry ratios. RESULTS: In the HCl+P group the partial pressure of oxygen increased when compared with HCl+S (128.0±2.9 mmHg and 111.0±6.7 mmHg, respectively) within 60 minutes. TNF-α levels in BAL do not differ significantly in the HCl+P group (516.0±5.9 pg/mL), and the HCl+S (513.0±10.6 pg/mL). CONCLUSION: The use of prone position improved oxygenation, but did not reduce TNF-α in BAL upon lung dysfunction induced by HCl.
Resumo:
The mechanisms of the systemic response associated with talc-induced pleurodesis are poorly understood. The aim of this study was to assess the acute inflammatory response and migration of talc of small. size particles injected in the pleural space. Rabbits were injected intrapleurally with talc solution containing small. or mixed particles and blood and pleural fluid samples were collected after 6, 24 or 48 h and assayed for leukocytes, neutrophils, lactate dehydrogenase, IL-8, VEGF, and TGF-beta. The lungs, spleen, liver and kidneys were assessed to study deposit of talc particles. Both types of talc produced an acute serum inflammatory response, more pronounced in the small particles group. Pleural fluid IL-8 and VEGF levels were higher in the small particle talc group. Correlation between pleural VEFG and TGF-beta levels was observed for both groups. Although talc particles were demonstrated in the organs of both groups, they were more pronounced in the small talc group. In conclusion, intrapleural injection of talc of small size particles produced a more pronounced acute systemic response and a greater deposition in organs than talc of mixed particles. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
OBJECTIVE: Statins are among the most prescribed drugs worldwide and their recently discovered anti-inflammatory effect seems to have an important role in inhibiting proinflammatory cytokine production, chemokines expression and counteracting the harmful effects of sepsis on the coagulation system. We decided to perform a meta-analysis of all randomized controlled trials ever published on statin therapy in septic patients to evaluate their effect on survival and length of hospital stay. DATA SOURCES AND STUDY SELECTION: Articles were assessed by four trained investigators, with divergences resolved by consensus. BioMedCentral, PubMed, Embase and the Cochrane Central Register of clinical trials were searched for pertinent studies. Inclusion criteria were random allocation to treatment and comparison of statins versus any comparator in septic patients. DATA EXTRACTION AND SYNTHESIS: Data from 650 patients in 5 randomized controlled studies were analyzed. No difference in mortality between patients receiving statins versus control (44/322 [14%] in the statins group vs 50/328 [15%] in the control arm, RR = 0.90 [95% CI 0.65 to 1.26], p = 0.6) was observed. No differences in hospital stay (p = 0.7) were found. CONCLUSIONS: Published data show that statin therapy has no effect on mortality in the overall population of adult septic patients. Scientific evidence on statins role in septic patients is still limited and larger randomized trials should be performed on this topic.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
Neutrophils are recruited to the site of parasite inoculation within a few hours of infection with the protozoan parasite Leishmania major. In C57BL/6 mice, which are resistant to infection, neutrophils are cleared from the site of s.c. infection within 3 days, whereas they persist for at least 10 days in susceptible BALB/c mice. In the present study, we investigated the role of macrophages (MPhi) in regulating neutrophil number. Inflammatory cells were recruited by i.p. injection of either 2% starch or L. major promastigotes. Neutrophils were isolated and cultured in the presence of increasing numbers of MPhi. Extent of neutrophil apoptosis positively correlated with the number of MPhi added. This process was strictly dependent on TNF because MPhi from TNF-deficient mice failed to induce neutrophil apoptosis. Assays using MPhi derived from membrane TNF knock-in mice or cultures in Transwell chambers revealed that contact with MPhi was necessary to induce neutrophil apoptosis, a process requiring expression of membrane TNF. L. major was shown to exacerbate MPhi-induced apoptosis of neutrophils, but BALB/c MPhi were not as potent as C57BL/6 MPhi in this induction. Our results emphasize the importance of MPhi-induced neutrophil apoptosis, and membrane TNF in the early control of inflammation.
Resumo:
Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.
Resumo:
The pathogenic bacterium Pseudomonas aeruginosa utilizes the 3-oxododecanoyl homoserine lactone (3OC(12)-HSL) autoinducer as a signaling molecule to coordinate the expression of virulence genes through quorum sensing. 3OC(12)-HSL also affects responses in host cells, including the upregulation of genes encoding inflammatory cytokines. This proinflammatory response may exacerbate underlying disease during P. aeruginosa infections. The specific mechanism(s) through which 3OC(12)-HSL influences host responses is unclear, and no mammalian receptors for 3OC(12)-HSL have been identified to date. Here, we report that 3OC(12)-HSL increases mRNA levels for a common panel of proinflammatory genes in murine fibroblasts and human lung epithelial cells. To identify putative 3OC(12)-HSL receptors, we examined the expression patterns of a panel of nuclear hormone receptors in these two cell lines and determined that both peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) and PPARgamma were expressed. 3OC(12)-HSL functioned as an agonist of PPARbeta/delta transcriptional activity and an antagonist of PPARgamma transcriptional activity and inhibited the DNA binding ability of PPARgamma. The proinflammatory effect of 3OC(12)-HSL in lung epithelial cells was blocked by the PPARgamma agonist rosiglitazone, suggesting that 3OC(12)-HSL and rosiglitazone are mutually antagonistic negative and positive regulators of PPARgamma activity, respectively. These data identify PPARbeta/delta and PPARgamma as putative mammalian 3OC(12)-HSL receptors and suggest that PPARgamma agonists may be employed as anti-inflammatory therapeutics for P. aeruginosa infections.
Resumo:
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a member of the nuclear hormone superfamily originally characterized as a regulator of adipocyte differentiation and lipid metabolism. In addition, PPAR-gamma has important immunomodulatory functions. If the effect of PPAR-gamma's activation in T-cell-mediated demyelination has been recently demonstrated, nothing is known about the role of PPAR-gamma in antibody-induced demyelination in the absence of T-cell interactions and monocyte/macrophage activation. Therefore, we investigated PPAR-gamma's involvement by using an in vitro model of inflammatory demyelination in three-dimensional aggregating rat brain cell cultures. We found that PPAR-gamma was not constitutively expressed in these cultures but was strongly up-regulated following demyelination mediated by antibodies directed against myelin oligodendrocyte glycoprotein (MOG) in the presence of complement. Pioglitazone, a selective PPAR-gamma agonist, partially protected aggregates from anti-MOG demyelination. Heat shock responses and the expression of the proinflammatory cytokine tumor necrosis factor-alpha were diminished by pioglitazone treatment. Therefore, pioglitazone protection seems to be linked to an inhibition of glial cell proinflammatory activities following anti-MOG induced demyelination. We show that PPAR-gamma agonists act not only on T cells but also on antibody-mediated demyelination. This may represent a significant benefit in treating multiple sclerosis patients.
Resumo:
Monocytes are central mediators in the development of atherosclerotic plaques. They circulate in blood and eventually migrate into tissue including the vessel wall where they give rise to macrophages and dendritic cells. The existence of monocyte subsets with distinct roles in homeostasis and inflammation suggests specialization of function. These subsets are identified based on expression of the CD14 and CD16 markers. Routinely applicable protocols remain elusive, however. Here, we present an optimized four-color flow cytometry protocol for analysis of human blood monocyte subsets using a specific PE-Cy5-conjugated monoclonal antibody (mAb) to HLA-DR, a PE-Cy7-conjugated mAb to CD14, a FITC-conjugated mAb to CD16, and PE-conjugated mAbs to additional markers relevant to monocyte function. Classical CD14(+)CD16(-) monocytes (here termed "Mo1" subset) expressed high CCR2, CD36, CD64, and CD62L, but low CX(3)CR1, whereas "nonclassical" CD14(lo)CD16(+) monocytes (Mo3) essentially showed the inverse expression pattern. CD14(+)CD16(+) monocytes (Mo2) expressed high HLA-DR, CD36, and CD64. In patients with stable coronary artery disease (n = 13), classical monocytes were decreased, whereas "nonclassical" monocytes were increased 90% compared with healthy subjects with angiographically normal coronary arteries (n = 14). Classical monocytes from CAD patients expressed higher CX(3)CR1 and CCR2 than controls. Thus, stable CAD is associated with expansion of the nonclassical monocyte subset and increased expression of inflammatory markers on monocytes. Flow cytometric analysis of monocyte subsets and marker expression may provide valuable information on vascular inflammation. This may translate into the identification of monocyte subsets as selective therapeutic targets, thus avoiding adverse events associated with indiscriminate monocyte inhibition.
Resumo:
An inflammasome is a multiprotein complex that serves as a platform for caspase-1 activation and caspase-1-dependent proteolytic maturation and secretion of interleukin-1β (IL-1β). Though a number of inflammasomes have been described, the NLRP3 inflammasome is the most extensively studied but also the most elusive. It is unique in that it responds to numerous physically and chemically diverse stimuli. The potent proinflammatory and pyrogenic activities of IL-1β necessitate that inflammasome activity is tightly controlled. To this end, a priming step is first required to induce the expression of both NLRP3 and proIL-1β. This event renders the cell competent for NLRP3 inflammasome activation and IL-1β secretion, and it is highly regulated by negative feedback loops. Despite the wide array of NLRP3 activators, the actual triggering of NLRP3 is controlled by integration a comparatively small number of signals that are common to nearly all activators. Minimally, these include potassium efflux, elevated levels of reactive oxygen species (ROS), and, for certain activators, lysosomal destabilization. Further investigation of how these and potentially other as yet uncharacterized signals are integrated by the NLRP3 inflammasome and the relevance of these biochemical events in vivo should provide new insight into the mechanisms of host defense and autoinflammatory conditions.
Resumo:
BACKGROUND Cerebral oedema is associated with significant neurological damage in patients with traumatic brain injury. Bradykinin is an inflammatory mediator that may contribute to cerebral oedema by increasing the permeability of the blood-brain barrier. We evaluated the safety and effectiveness of the non-peptide bradykinin B2 receptor antagonist Anatibant in the treatment of patients with traumatic brain injury. During the course of the trial, funding was withdrawn by the sponsor. METHODS Adults with traumatic brain injury and a Glasgow Coma Scale score of 12 or less, who had a CT scan showing an intracranial abnormality consistent with trauma, and were within eight hours of their injury were randomly allocated to low, medium or high dose Anatibant or to placebo. Outcomes were Serious Adverse Events (SAE), mortality 15 days following injury and in-hospital morbidity assessed by the Glasgow Coma Scale (GCS), the Disability Rating Scale (DRS) and a modified version of the Oxford Handicap Scale (HIREOS). RESULTS 228 patients out of a planned sample size of 400 patients were randomised. The risk of experiencing one or more SAEs was 26.4% (43/163) in the combined Anatibant treated group, compared to 19.3% (11/57) in the placebo group (relative risk = 1.37; 95% CI 0.76 to 2.46). All cause mortality in the Anatibant treated group was 19% and in the placebo group 15.8% (relative risk 1.20, 95% CI 0.61 to 2.36). The mean GCS at discharge was 12.48 in the Anatibant treated group and 13.0 in the placebo group. Mean DRS was 11.18 Anatibant versus 9.73 placebo, and mean HIREOS was 3.94 Anatibant versus 3.54 placebo. The differences between the mean levels for GCS, DRS and HIREOS in the Anatibant and placebo groups, when adjusted for baseline GCS, showed a non-significant trend for worse outcomes in all three measures. CONCLUSION This trial did not reach the planned sample size of 400 patients and consequently, the study power to detect an increase in the risk of serious adverse events was reduced. This trial provides no reliable evidence of benefit or harm and a larger trial would be needed to establish safety and effectiveness. TRIAL REGISTRATION This study is registered as an International Standard Randomised Controlled Trial, number ISRCTN23625128.
Resumo:
Broad-spectrum inhibitors of HDACs are therapeutic in many inflammatory disease models but exacerbated disease in a mouse model of atherosclerosis. HDAC inhibitors have anti- and proinflammatory effects on macrophages in vitro. We report here that several broad-spectrum HDAC inhibitors, including TSA and SAHA, suppressed the LPS-induced mRNA expression of the proinflammatory mediators Edn-1, Ccl-7/MCP-3, and Il-12p40 but amplified the expression of the proatherogenic factors Cox-2 and Pai-1/serpine1 in primary mouse BMM. Similar effects were also apparent in LPS-stimulated TEPM and HMDM. The pro- and anti-inflammatory effects of TSA were separable over a concentration range, implying that individual HDACs have differential effects on macrophage inflammatory responses. The HDAC1-selective inhibitor, MS-275, retained proinflammatory effects (amplification of LPS-induced expression of Cox-2 and Pai-1 in BMM) but suppressed only some inflammatory responses. In contrast, 17a (a reportedly HDAC6-selective inhibitor) retained anti-inflammatory but not proinflammatory properties. Despite this, HDAC6(-/-) macrophages showed normal LPS-induced expression of HDAC-dependent inflammatory genes, arguing that the anti-inflammatory effects of 17a are not a result of inhibition of HDAC6 alone. Thus, 17a provides a tool to identify individual HDACs with proinflammatory properties.
Resumo:
BACKGROUND Despite the evidence that Lactoferrin (Lf) is involved in allergic asthma processes, it is unknown whether neutrophils can be one of the main cellular sources of this key inflammatory mediator directly in response of an IgE mediated stimulus. The present study was undertaken to analyze this question. METHODS Neutrophils from healthy subjects (n = 34) and neutrophils from allergic asthmatic patients (n = 102) were challenged in vitro with specific allergens to which the patients were sensitized, PAF, or agonist mAbs against IgE-receptors, and the levels of Lf were measured in the culture supernatant. The levels of serum IgE together with the severity of symptoms were also analyzed. RESULTS Lf was released into the culture supernatant of neutrophils from allergic asthmatic patients in response to allergens and PAF. This response was highly allergen-specific, and did not happen in neutrophils from healthy donors. Allergen effect was mimicked by Abs against FcεRI and galectin-3 but not by FcεRII. The levels of released Lf correlated well with the levels of serum specific IgE and severity of asthma symptoms. These observations represent a novel view of neutrophils as an important source of Lf in allergic asthma. Importantly, the levels of released Lf by neutrophils could therefore be used to evaluate disease severity in allergic asthmatic patients.
Resumo:
Heart transplantation is the treatment of choice for many patients with end-stage heart failure. Its success, however, is limited by organ shortage, side effects of immunosuppressive drugs, and chronic rejection. Gene therapy is conceptually appealing for applications in transplantation, as the donor organ is genetically manipulated ex vivo before transplantation. Localised expression of immunomodulatory genes aims to create a state of immune privilege within the graft, which could eliminate the need for systemic immunosuppression. In this review, recent advances in the development of gene therapy in heart transplantation are discussed. Studies in animal models have demonstrated that genetic modification of the donor heart with immunomodulatory genes attenuates ischaemia-reperfusion injury and rejection. Alternatively, bone marrow-derived cells genetically engineered with donor-type major histocompatibility complex (MHC) class I or II promote donor-specific hyporesponsiveness. Genetic engineering of naïve T cells or dendritic cells may induce regulatory T cells and regulatory dendritic cells. Despite encouraging results in animal models, however, clinical gene therapy trials in heart transplantation have not yet been started. The best vector and gene to be delivered remain to be identified. Pre-clinical studies in non-human primates are needed. Nonetheless, the potential of gene therapy as an adjunct therapy in transplantation is essentially intact.