931 resultados para In vivo transformation
Resumo:
Normal somatic cells invariably enter a state of irreversibly arrested growth and altered function after a finite number of divisions. This process, termed replicative senescence, is thought to be a tumor-suppressive mechanism and an underlying cause of aging. There is ample evidence that escape from senescence, or immortality, is important for malignant transformation. By contrast, the role of replicative senescence in organismic aging is controversial. Studies on cells cultured from donors of different ages, genetic backgrounds, or species suggest that senescence occurs in vivo and that organismic lifespan and cell replicative lifespan are under common genetic control. However, senescent cells cannot be distinguished from quiescent or terminally differentiated cells in tissues. Thus, evidence that senescent cells exist and accumulate with age in vivo is lacking. We show that several human cells express a beta-galactosidase, histochemically detectable at pH 6, upon senescence in culture. This marker was expressed by senescent, but not presenescent, fibroblasts and keratinocytes but was absent from quiescent fibroblasts and terminally differentiated keratinocytes. It was also absent from immortal cells but was induced by genetic manipulations that reversed immortality. In skin samples from human donors of different age, there was an age-dependent increase in this marker in dermal fibroblasts and epidermal keratinocytes. This marker provides in situ evidence that senescent cells may exist and accumulate with age in vivo.
Resumo:
Purpose: Recent studies indicate that ocular and scleral rigidity is pertinent to our understanding of glaucoma, age related macular degeneration and the development and pathogenesis of myopia. The principal method of measuring ocular rigidity is by extrapolation of data from corneal indentation tonometry (Ko) using Friedenwald’s transformation algorithms. Using scleral indentation (Schiotz tonometry) we assess whether regional variations in resistance to indentation occur in vivo across the human anterior globe directly, with reference to the deflection of Schiotz scale readings. Methods: Data were collected from both eyes of 26 normal young adult subjects with a range of refractive error (mean spherical equivalent ± S.D. of -1.77 D ± 3.28 D, range -10.56 to +4.38 D). Schiotz tonometry (5.5 g & 7.5 g) was performed on the cornea and four scleral quadrants; supero-temporal (ST) and -nasal (SN), infero-temporal (IT) and -nasal (IN) approximately 8 mm posterior to the limbus. Results: Values of Ko (mm3)-1 were consistent with those previously reported (mean 0.0101 ± 0.0082, range 0.0019–0.0304). In regards to the sclera, significant differences (p < 0.001) were found across quadrants with indentation readings for both loads between means for the cornea and ST; ST and SN; ST and IT, ST and IN. Mean (±S.D.) scale readings for 5.5 g were: cornea 5.93 ± 1.14, ST 8.05 ± 1.58, IT 7.03 ± 1.86, SN 6.25 ± 1.10, IN 6.02 ± 1.49; and 7.5 g: cornea 9.26 ± 1.27, ST 11.56 ± 1.65, IT 10.31 ± 1.74, SN 9.91 ± 1.20, IN 9.50 ± 1.56. Conclusions: Significant regional variation was found in the resistance of the anterior sclera to indentation produced by the Schiotz tonometer.
Resumo:
Camu-camu (Myrciaria dubia H.B.K. (McVaugh)) is a native Amazon fruit, recognized worldwide as one of the main natural sources of ascorbic acid. Due to its great acidity, this fruit is generally consumed after processing into juice or as ingredient in food preparations. As a co-product of the camu-camu processing, a significant amount of agroindustrial residue is generated. Despite the studies showing the bioactive value and biological potential of the fruit, few studies have approached the possible processing techniques, transformation and preservation of camu-camu fruits and its agroindustrial pomace. Therefore, the present work has the objective of evaluating two different drying processes applied to camu-camu pomace (peel and seeds with residual pulp), freeze drying and hot air drying, in order to obtain a functional fruit product. This thesis was divided into three stages: the first one shows the studies related to the freeze drying and hot air drying, where we demonstrated the impact of the selected drying techniques on the bioactive components of camu-camu, taking the fresh pomace as the control group. Among the investigated conditions, the groups obtained at 50ºC and 4 m/s (SC50) and 80ºC and 6 m/s (SC80) were selected as for further studies, based on their ascorbic acid final content and Folin-Ciocalteau reducing capacity. In addition to SC50 and SC80, the fresh pomace (RF) and freeze dried (RL) samples were also evaluated in these further stages of the research. Overall, the results show higher bioactive concentration in the RF samples, followed by RL, SC50 and SC80. On the second step of the research, the antioxidant, antimicrobial and antienzymatic activities were evaluated and the same tendency was observed. It was also reported, for the first time in the literature, the presence of syringic acid in dried camu-camu pomace. In the third and final stage of the research, it was investigated the effect of dried camu-camu on aging and neuroprotective disorders, using the in vivo model C.elegans. It was observed that camu-camu extracts were able to modulate important signaling genes relevant to thermal and oxidative stresses (p < 0.05). The polar acid, polar basic and polar neutral fractions obtained from the low molecular extracts of SC50 were able to extend the lifespan of wild type N2 C. elegans in 20% and 13% (p < 0.001). Results also showed that the paralysis induced by the β1-42 amyloid was significantly (p < 0.0001) retarded in CL4176 worms. Similarly, the camu-camu extracts attenuated the dopaminergic induction associated to Parkinson’s disease. Finally, a global analysis of the data presented here reveal that the camu-camu pomace, a co-product obtained from the industrial processing of a native Brazilian fruit, is a relevant natural source of health relevant compounds. This thesis, shows for the first time, the multifunctionality of camu-camu pomace, a natural resource still underexploited for scientific, commercial and technological purposes.
Resumo:
In different types of myeloid leukemia, increased formation of reactive oxygen species (ROS) has been noted and associated with aspects of cell transformation including the promotion of leukemic cell proliferation and migration, as well as DNA-damage and accumulation of mutations. Work reviewed in this article has shown the involvement of NADPH oxidase (NOX)-derived ROS downstream of oncogenic protein-tyrosine kinases in both processes, and the related pathways have been partially identified. FLT3-ITD, an important oncoprotein in a subset of AML, causes activation of AKT and subsequently stabilization of p22phox, a regulatory subunit for NOX1-4. This process is linked to ROS formation and DNA damage. Moreover, FLT3-ITD signaling through STAT5 enhances expression of NOX4, ROS formation and inactivation of the protein-tyrosine phosphatase DEP-1/PTPRJ, a negative regulator of FLT3 signaling, by reversible oxidation of its catalytic cysteine residue. Genetic inactivation of NOX4 restored DEP-1 activity and attenuated cell transformation by FLT3-ITD in vitro and in vivo. Future work is required to further explore these mechanisms and their causal involvement in leukemic cell transformation, which may result in the identification of novel candidate targets for therapy.
Resumo:
Hydroxyurea (HU), or hydroxycarbamide, is used for the treatment of some myeloproliferative and neoplastic diseases, and is currently the only drug approved by the FDA for use in sickle cell disease (SCD). Despite the relative success of HU therapy for SCD, a genetic disorder of the hemoglobin β chain that results in red-cell sickling, hemolysis, vascular inflammation and recurrent vasoocclusion, the exact mechanisms by which HU actuates remain unclear. We hypothesized that HU may modulate endothelial angiogenic processes, with important consequences for vascular inflammation. The effects of HU (50-200 μM; 17-24 h) on endothelial cell functions associated with key steps of angiogenesis were evaluated using human umbilical vein endothelial cell (HUVEC) cultures. Expression profiles of the HIF1A gene and the miRNAs 221 and 222, involved in endothelial function, were also determined in HUVECs following HU administration and the direct in vivo antiangiogenic effects of HU were assessed using a mouse Matrigel-plug neovascularization assay. Following incubation with HU, HUVECs exhibited high cell viability, but displayed a significant 75% inhibition in the rate of capillary-like-structure formation, and significant decreases in proliferative and invasive capacities. Furthermore, HU significantly decreased HIF1A expression, and induced the expression of miRNA 221, while downregulating miRNA 222. In vivo, HU reduced vascular endothelial growth factor (VEGF)-induced vascular development in Matrigel implants over 7 days. Findings indicate that HU is able to inhibit vessel assembly, a crucial angiogenic process, both in vitro and in vivo, and suggest that some of HU's therapeutic effects may occur through novel vascular mechanisms.
Resumo:
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.
Resumo:
Sugarcane is a monocot plant that accumulates sucrose to levels of up to 50% of dry weight in the stalk. The mechanisms that are involved in sucrose accumulation in sugarcane are not well understood, and little is known with regard to factors that control the extent of sucrose storage in the stalks. UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) is an enzyme that produces UDP-glucose, a key precursor for sucrose metabolism and cell wall biosynthesis. The objective of this work was to gain insights into the ScUGPase-1 expression pattern and regulatory mechanisms that control protein activity. ScUGPase-1 expression was negatively correlated with the sucrose content in the internodes during development, and only slight differences in the expression patterns were observed between two cultivars that differ in sucrose content. The intracellular localization of ScUGPase-1 indicated partial membrane association of this soluble protein in both the leaves and internodes. Using a phospho-specific antibody, we observed that ScUGPase-1 was phosphorylated in vivo at the Ser-419 site in the soluble and membrane fractions from the leaves but not from the internodes. The purified recombinant enzyme was kinetically characterized in the direction of UDP-glucose formation, and the enzyme activity was affected by redox modification. Preincubation with H2O2 strongly inhibited this activity, which could be reversed by DTT. Small angle x-ray scattering analysis indicated that the dimer interface is located at the C terminus and provided the first structural model of the dimer of sugarcane UGPase in solution.
Resumo:
The effectiveness of low-level laser therapy in muscle regeneration is still not well known. To investigate the effects of laser irradiation during muscle healing. For this purpose, 63 rats were distributed to 3 groups: non-irradiated control group (CG); group irradiated at 10 J/cm(2) (G10); and group irradiated at 50 J/cm(2) (G50). Each group was divided into 3 different subgroups (n=7), and on days 7, 14 and 21 post-injury the rats were sacrificed. Seven days post-surgery, the CG showed destroyed zones and extensive myofibrillar degeneration. For both treated groups, the necrosis area was smaller compared to the CG. On day 14 post-injury, treated groups demonstrated better tissue organization, with newly formed muscle fibers compared to the CG. On the 21(st) day, the irradiated groups showed similar patterns of tissue repair, with improved muscle structure at the site of the injury, resembling uninjured muscle tissue organization. Regarding collagen deposition, the G10 showed an increase in collagen synthesis. In the last period evaluated, both treated groups showed statistically higher values in comparison with the CG. Furthermore, laser irradiation at 10 J/cm(2) produced a down-regulation of cyclooxygenase 2 (Cox-2) immunoexpression on day 7 post-injury. Moreover, Cox-2 immunoexpression was decreased in both treated groups on day 14. Laser therapy at both fluencies stimulated muscle repair through the formation of new muscle fiber, increase in collagen synthesis, and down-regulation of Cox-2 expression.
Resumo:
To characterize liposomal-lidocaine formulations for topical use on oral mucosa and to compare their in vitro permeation and in vivo anesthetic efficacy with commercially available lidocaine formulations. Large unilamellar liposomes (400 nm) containing lidocaine were prepared using phosphatidylcholine, cholesterol, and α-tocoferol (4:3:0.07, w:w:w) and were characterized in terms of membrane/water partition coefficient, encapsulation efficiency, size, polydispersity, zeta potential, and in vitro release. In vitro permeation across pig palatal mucosa and in vivo topical anesthetic efficacy on the palatal mucosa in healthy volunteers (double-blinded cross-over, placebo controlled study) were performed. The following formulations were tested: liposome-encapsulated 5% lidocaine (Liposome-Lido5); liposome-encapsulated 2.5% lidocaine (Liposome-Lido2.5); 5% lidocaine ointment (Xylocaina®), and eutectic mixture of lidocaine and prilocaine 2.5% (EMLA®). The Liposome-Lido5 and EMLA showed the best in vitro permeation parameters (flux and permeability coefficient) in comparison with Xylocaina and placebo groups, as well as the best in vivo topical anesthetic efficacy. We successfully developed and characterized a liposome encapsulated 5% lidocaine gel. It could be considered an option to other topical anesthetic agents for oral mucosa.
Resumo:
Rubus niveus Thunb. plant belongs to Rosaceae family and have been used traditionally to treat wounds, burns, inflammation, dysentery, diarrhea and for curing excessive bleeding during menstrual cycle. The present study was undertaken to investigate the in vivo genotoxicity of Rubus niveus aerial parts extract and its possible chemoprotection on doxorubicin (DXR)-induced DNA damage. In parallel, the main phytochemicals constituents in the extract were determined. The animals were exposed to the extract for 24 and 48h, and the doses selected were 500, 1000 and 2000mg/kg b.w. administered by gavage alone or prior to DXR (30mg/kg b.w.) administered by intraperitoneal injection. The endpoints analyzed were DNA damage in bone marrow and peripheral blood cells assessed by the alkaline alkaline (pH>13) comet assay and bone marrow micronucleus test. The results of chemical analysis of the extract showed the presence of tormentic acid, stigmasterol, quercitinglucoronide (miquelianin) and niga-ichigoside F1 as main compounds. Both cytogenetic endpoints analyzed showed that there were no statistically significant differences (p>0.05) between the negative control and the treated groups with the two higher doses of Rubus niveus extract alone, demonstrating absence of genotoxic and mutagenic effects. Aneugenic/clastogenic effect was observed only at 2000mg/kg dose. On the other hand, in the both assays and all tested doses were observed a significant reduction of DNA damage and chromosomal aberrations in all groups co-treated with DXR and extract compared to those which received only DXR. These results indicate that Rubus niveus aerial parts extract did not revealed any genotoxic effect, but presented some aneugenic/clastogenic effect at higher dose; and suggest that it could be a potential adjuvant against development of second malignant neoplasms caused by the cancer chemotherapic DXR.
Resumo:
In this work, we discuss the use of multi-way principal component analysis combined with comprehensive two-dimensional gas chromatography to study the volatile metabolites of the saprophytic fungus Memnoniella sp. isolated in vivo by headspace solid-phase microextraction. This fungus has been identified as having the ability to induce plant resistance against pathogens, possibly through its volatile metabolites. Adequate culture media was inoculated, and its headspace was then sampled with a solid-phase microextraction fiber and chromatographed every 24 h over seven days. The raw chromatogram processing using multi-way principal component analysis allowed the determination of the inoculation period, during which the concentration of volatile metabolites was maximized, as well as the discrimination of the appropriate peaks from the complex culture media background. Several volatile metabolites not previously described in the literature on biocontrol fungi were observed, as well as sesquiterpenes and aliphatic alcohols. These results stress that, due to the complexity of multidimensional chromatographic data, multivariate tools might be mandatory even for apparently trivial tasks, such as the determination of the temporal profile of metabolite production and extinction. However, when compared with conventional gas chromatography, the complex data processing yields a considerable improvement in the information obtained from the samples. This article is protected by copyright. All rights reserved.
Resumo:
The copolymer poly (L-co-D,L lactic acid), PLDLA, has gained prominence in the field of temporary prostheses due to the fact that their time of degradation is quite compatible with the requirement in the case of osseous fracture. In this work the in vivo degradation of devices from copolymer, as a system of plates and screws, used in fixation of the tibia of rabbits was studied. The devices were implanted in 15 adult rabbits, albinos, New Zealand race, and they were used as control devices of alloys of titanium (Ti-6Al-4V/ V grade). The use of copolymers, synthesized in the laboratory, was tested in the repair of fracture in rabbits'tibias, being assessed in the following times: 2 weeks, 2 months and 3 months. Morphological analysis of tissue surrounding the plate and screw system, for 2 weeks of implantation, showed the presence of osteoblasts, indicating a pre bone formation. After 2 months there was new bone formation in the region in contact with the polymer. This bone growth occurred simultaneously with the process of PLDLA degradation, invading the region where there was polymer and after 3 months there was an intense degradation of the copolymer and hence greater tissue invasion compared to 2 months which characterized bone formation in a region where the polymer degraded. The in vivo degradation study of the devices for PLDLA by means of histological evaluations during the period of consolidation of the fracture showed the efficiency of plate and screw system, and it was possible to check formation of bone tissue at the implantation site, without the presence of inflammatory reaction
Resumo:
The aim of this investigation was to monitor metronidazole concentrations in the gingival crevicular fluid (GCF) collected from periodontal pockets of dogs after treatment with an experimental 15% metronidazole gel. Five dogs had periodontitis induced by cotton ligatures placed subgingivally and maintained for a 30-day period. After the induction period, only pockets with 4 mm or deeper received the gel. Each pocket was filled up to the gingival margin by means of a syringe with a blunt-end needle. GCF was collected in paper strips and quantified in an electronic device before and after 15 minutes, 1 h, 6 h, 24 h and 48 h of gel administration. The GCF samples were assayed for metronidazole content by means of a high performance liquid chromatography method. Concentrations of metronidazole in the GCF of the 5 dogs (mean ± SD, in µg/mL) were 0 ± 0 before gel application and 47,185.75 ± 24,874.35 after 15 minutes, 26,457.34 ± 25,516.91 after 1 h, 24.18 ± 23.11 after 6 h, 3.78 ± 3.45 after 24 h and 3.34 ± 5.54 after 48 h. A single administration of the 15% metronidazole gel released the drug in the GCF of dogs in levels several-fold higher than the minimum inhibitory concentration for some periodontopathogens grown in subgingival biofilms for up to one hour, but metronidazole could be detected in the GCF at least 48 hours after the gel application.
Resumo:
Tamarindus indica has been used in folk medicine as an antidiabetic, a digestive aid, and a carminative, among other uses. Currently, there is no information in the toxicology literature concerning the safety of T. indica extract. We evaluated the clastogenic and/or genotoxic potential of fruit pulp extract of this plant in vivo in peripheral blood and liver cells of Wistar rats, using the comet assay, and in bone marrow cells of Swiss mice, using the micronucleus test. The extract was administered by gavage at doses of 1000, 1500 and 2000 mg/kg body weight. Peripheral blood and liver cells from Wistar rats were collected 24 h after treatment, for the comet assay. The micronucleus test was carried out in bone marrow cells from Swiss mice collected 24 h after treatment. The extract made with T. indica was devoid of clastogenic and genotoxic activities in the cells of the rodents, when administered orally at these three acute doses.
Resumo:
Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.