941 resultados para Impulsive noise
Resumo:
The detection of signals in the presence of noise is one of the most basic and important problems encountered by communication engineers. Although the literature abounds with analyses of communications in Gaussian noise, relatively little work has appeared dealing with communications in non-Gaussian noise. In this thesis several digital communication systems disturbed by non-Gaussian noise are analysed. The thesis is divided into two main parts. In the first part, a filtered-Poisson impulse noise model is utilized to calulate error probability characteristics of a linear receiver operating in additive impulsive noise. Firstly the effect that non-Gaussian interference has on the performance of a receiver that has been optimized for Gaussian noise is determined. The factors affecting the choice of modulation scheme so as to minimize the deterimental effects of non-Gaussian noise are then discussed. In the second part, a new theoretical model of impulsive noise that fits well with the observed statistics of noise in radio channels below 100 MHz has been developed. This empirical noise model is applied to the detection of known signals in the presence of noise to determine the optimal receiver structure. The performance of such a detector has been assessed and is found to depend on the signal shape, the time-bandwidth product, as well as the signal-to-noise ratio. The optimal signal to minimize the probability of error of; the detector is determined. Attention is then turned to the problem of threshold detection. Detector structure, large sample performance and robustness against errors in the detector parameters are examined. Finally, estimators of such parameters as. the occurrence of an impulse and the parameters in an empirical noise model are developed for the case of an adaptive system with slowly varying conditions.
Resumo:
A methodology has been developed and presented to enable the use of small to medium scale acoustic hover facilities for the quantitative measurement of rotor impulsive noise. The methodology was applied to the University of Maryland Acoustic Chamber resulting in accurate measurements of High Speed Impulsive (HSI) noise for rotors running at tip Mach numbers between 0.65 and 0.85 – with accuracy increasing as the tip Mach number was increased. Several factors contributed to the success of this methodology including: • High Speed Impulsive (HSI) noise is characterized by very distinct pulses radiated from the rotor. The pulses radiate high frequency energy – but the energy is contained in short duration time pulses. • The first reflections from these pulses can be tracked (using ray theory) and, through adjustment of the microphone position and suitably applied acoustic treatment at the reflected surface, reduced to small levels. A computer code was developed that automates this process. The code also tracks first bounce reflection timing, making it possible to position the first bounce reflections outside of a measurement window. • Using a rotor with a small number of blades (preferably one) reduces the number of interfering first bounce reflections and generally improves the measured signal fidelity. The methodology will help the gathering of quantitative hovering rotor noise data in less than optimal acoustic facilities and thus enable basic rotorcraft research and rotor blade acoustic design.
Resumo:
We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Este trabalho apresenta a implementação em software da codificação de canal utilizada no padrão ADSL. A teoria da codificação de canal e descrita, bem como a codificação de canal implementada no Software Modem ADSL utilizando o ambiente de desenvolvimento Ptolemy II. A implementação de um modelo de ruído impulsivo também é apresentada. Para garantir que a implementação obedeça o padrão do ADSL, testes utilizando o analisador de sistemas DSL TraceSpan são descritos. O trabalho apresenta ainda um exemplo de aplicação do Software Modem ADSL, caracterizado por um estudo de caso sobre os efeitos do ruído impulsivo na transmissão de vídeo, analisando o impacto de alguns parâmetros da codificação de canal na correção dos erros.
Resumo:
O presente trabalho apresenta testes e experimentos laboratoriais para medição de crosstalk e ruído impulsivo em sistemas DSL, os quais são de grande importância para o aperfeiçoamento e evolução deste tipo de tecnologia. O estudo do crosstalk voltou-se a uma campanha de medições em cabos telefônicos reais de curto comprimento e operando em altas frequências. Os resultados destas medidas foram utilizados no cálculo da capacidade de transmissão de sistemas DSL operando neste cenário ainda pouco explorado. O estudo do ruído impulsivo foi focado no desenvolvimento de um sistema digitalizador de sinais de linha telefônica possibilitando a medição real deste tipo de fenômeno.
Resumo:
La teoría de reconocimiento y clasificación de patrones y el aprendizaje automático son actualmente áreas de conocimiento en constante desarrollo y con aplicaciones prácticas en múltiples ámbitos de la industria. El propósito de este Proyecto de Fin de Grado es el estudio de las mismas así como la implementación de un sistema software que dé solución a un problema de clasificación de ruido impulsivo, concretamente mediante el desarrollo de un sistema de seguridad basado en la clasificación de eventos sonoros en tiempo real. La solución será integral, comprendiendo todas las fases del proceso, desde la captación de sonido hasta el etiquetado de los eventos registrados, pasando por el procesado digital de señal y la extracción de características. Para su desarrollo se han diferenciado dos partes fundamentales; una primera que comprende la interfaz de usuario y el procesado de la señal de audio donde se desarrollan las labores de monitorización y detección de ruido impulsivo y otra segunda centrada únicamente en la clasificación de los eventos sonoros detectados, definiendo una arquitectura de doble clasificador donde se determina si los eventos detectados son falsas alarmas o amenazas, etiquetándolos como de un tipo concreto en este segundo caso. Los resultados han sido satisfactorios, mostrando una fiabilidad global en el proceso de entorno al 90% a pesar de algunas limitaciones a la hora de construir la base de datos de archivos de audio, lo que prueba que un dispositivo de seguridad basado en el análisis de ruido ambiente podría incluirse en un sistema integral de alarma doméstico aumentando la protección del hogar. ABSTRACT. Pattern classification and machine learning are currently expertise areas under continuous development and also with extensive applications in many business sectors. The aim of this Final Degree Project is to study them as well as the implementation of software to carry on impulsive noise classification tasks, particularly through the development of a security system based on sound events classification. The solution will go over all process stages, from capturing sound to the labelling of the events recorded, without forgetting digital signal processing and feature extraction, everything in real time. In the development of the Project a distinction has been made between two main parts. The first one comprises the user’s interface and the audio signal processing module, where monitoring and impulsive noise detection tasks take place. The second one is focussed in sound events classification tasks, defining a double classifier architecture where it is determined whether detected events are false alarms or threats, labelling them from a concrete category in the latter case. The obtained results have been satisfactory, with an overall reliability of 90% despite some limitations when building the audio files database. This proves that a safety device based on the analysis of environmental noise could be included in a full alarm system increasing home protection standards.
Resumo:
Statistical model-based methods are presented for the reconstruction of autocorrelated signals in impulsive plus continuous noise environments. Signals are modelled as autoregressive and noise sources as discrete and continuous mixtures of Gaussians, allowing for robustness in highly impulsive and non-Gaussian environments. Markov Chain Monte Carlo methods are used for reconstruction of the corrupted waveforms within a Bayesian probabilistic framework and results are presented for contaminated voice and audio signals.
Resumo:
External interferences can severely degrade the performance of an Over-the-horizon radar (OTHR), so suppression of external interferences in strong clutter environment is the prerequisite for the target detection. The traditional suppression solutions usually began with clutter suppression in either time or frequency domain, followed by the interference detection and suppression. Based on this traditional solution, this paper proposes a method characterized by joint clutter suppression and interference detection: by analyzing eigenvalues in a short-time moving window centered at different time position, Clutter is suppressed by discarding the maximum three eigenvalues at every time position and meanwhile detection is achieved by analyzing the remained eigenvalues at different position. Then, restoration is achieved by forward-backward linear prediction using interference-free data surrounding the interference position. In the numeric computation, the eigenvalue decomposition (EVD) is replaced by values decomposition (SVD) based on the equivalence of these two processing. Data processing and experimental results show its efficiency of noise floor falling down about 10-20 dB.
Resumo:
We analyze the transport of heat along a chain of particles interacting through anharmonic potentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the energy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier's law. That is for large system size L the heat current J behaves as J ‘approximately’ 1/L, which amounts to say that the conductivity k is constant. The conductivity is related to the current by J = kΔT/L, where ΔT is the difference in the temperatures of the reservoirs. The behavior of heat conductivity k for small intensities¸ of the shot noise and large system sizes L are obtained by assuming a scaling behavior of the type k = ‘L POT a Psi’(L’lambda POT a/b’) where a and b are scaling exponents. For the pure harmonic case a = b = 1, characterizing a ballistic conduction of heat when the shot noise is absent. For the anharmonic case we found values for the exponents a and b smaller then 1 and thus consistent with a superdiffusive conduction of heat without the shot noise. We also show that the heat conductivity is not constant but is an increasing function of temperature.