931 resultados para Impedance matching
Resumo:
This work presents the analysis of an antenna of fractal microstrip of Koch with dielectric multilayers and inclinations in the ground plane, whose values of the angles are zero degree (without inclinations), three, seven and twelve degrees. This antenna consists of three dielectric layers arranged vertically on each other, using feeding microstrip line in patch 1, of the first layer, which will feed the remaining patches of the upper layers by electromagnetic coupling. The objective of this work is to analyze the effects caused by increase of the angle of inclination of the ground plane in some antenna parameters such as return loss, resonant frequency, bandwidth and radiation pattern. The presented results demonstrate that with the increase of the inclination angle it is possible to get antennas with characteristics multiband, with bigger bandwidth, and improving the impedance matching for each case analyzed, especially the larger angle
Resumo:
This work presents a theoretical and experimental analysis about the properties of microstrip antennas with integrated frequency selective surfaces (Frequency Selective Surface - FSS). The integration occurs through the insertion of the FSS on ground plane of microstrip patch antenna. This integration aims to improve some characteristics of the antennas. The FSS using patch-type elements in square unit cells. Specifically, the simulated results are obtained using the commercial computer program CST Studio Suite® version 2011. From a standard antenna, designed to operate in wireless communication systems of IEEE 802.11 a / b / g / n the dimensions of the FSS are varied to obtain an optimization of some antenna parameters such as impedance matching and selectivity in the operating bands. After optimization of the investigated parameters are built two prototypes of microstrip patch antennas with and without the FSS ground plane. Comparisons are made of the results with the experimental results by 14 ZVB network analyzer from Rohde & Schwarz ®. The comparison aims to validate the simulations performed and show the improvements obtained with the FSS in integrated ground plane antenna. In the construction of prototypes, we used dielectric substrates of the type of Rogers Corporation RT-3060 with relative permittivity equal to 10.2 and low loss tangent. Suggestions for continued work are presented
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Heat transfer is considered as one of the most critical issues for design and implement of large-scale microwave heating systems, in which improvement of the microwave absorption of materials and suppression of uneven temperature distribution are the two main objectives. The present work focuses on the analysis of heat transfer in microwave heating for achieving highly efficient microwave assisted steelmaking through the investigations on the following aspects: (1) characterization of microwave dissipation using the derived equations, (2) quantification of magnetic loss, (3) determination of microwave absorption properties of materials, (4) modeling of microwave propagation, (5) simulation of heat transfer, and (6) improvement of microwave absorption and heating uniformity. Microwave heating is attributed to the heat generation in materials, which depends on the microwave dissipation. To theoretically characterize microwave heating, simplified equations for determining the transverse electromagnetic mode (TEM) power penetration depth, microwave field attenuation length, and half-power depth of microwaves in materials having both magnetic and dielectric responses were derived. It was followed by developing a simplified equation for quantifying magnetic loss in materials under microwave irradiation to demonstrate the importance of magnetic loss in microwave heating. The permittivity and permeability measurements of various materials, namely, hematite, magnetite concentrate, wüstite, and coal were performed. Microwave loss calculations for these materials were carried out. It is suggested that magnetic loss can play a major role in the heating of magnetic dielectrics. Microwave propagation in various media was predicted using the finite-difference time-domain method. For lossy magnetic dielectrics, the dissipation of microwaves in the medium is ascribed to the decay of both electric and magnetic fields. The heat transfer process in microwave heating of magnetite, which is a typical magnetic dielectric, was simulated by using an explicit finite-difference approach. It is demonstrated that the heat generation due to microwave irradiation dominates the initial temperature rise in the heating and the heat radiation heavily affects the temperature distribution, giving rise to a hot spot in the predicted temperature profile. Microwave heating at 915 MHz exhibits better heating homogeneity than that at 2450 MHz due to larger microwave penetration depth. To minimize/avoid temperature nonuniformity during microwave heating the optimization of object dimension should be considered. The calculated reflection loss over the temperature range of heating is found to be useful for obtaining a rapid optimization of absorber dimension, which increases microwave absorption and achieves relatively uniform heating. To further improve the heating effectiveness, a function for evaluating absorber impedance matching in microwave heating was proposed. It is found that the maximum absorption is associated with perfect impedance matching, which can be achieved by either selecting a reasonable sample dimension or modifying the microwave parameters of the sample.
Resumo:
Strong high-order Rayleigh or Sezawa modes, in addition to the fundamental Rayleigh mode, have been observed in ZnO/GaAs(001) systems along the [110] propagation direction of GaAs. The dispersion of the different acoustic waves has been calculated and compared to the experimental data. The bandwidth and impedance matching characteristics of the multimode SAW delay lines operating at high frequencies (2.5-3.5 GHz regime) have been investigated.
Resumo:
Esse trabalho de pesquisa apresenta um estudo detalhado sobre guias de ondas integrados ao substrato (SIW) operando em frequências de micro-ondas com base na teoria de guias de ondas retangulares (RWG). O estudo sobre guias SIW associa equações apresentadas na literatura e utiliza simulações eletromagnéticas para desenvolver um procedimento de projeto bem definido. É considerada a integração entre guias SIW e linhas de transmissão de microfita, projetando-se transições entre essas duas estruturas com o propósito de prover casamento de impedância e de viabilizar a caracterização em frequências de micro-ondas. São apresentadas considerações sobre processos de fabricação de circuitos SIW em substratos constituídos por laminados de alta frequência. Uma vez estabelecidos os procedimentos de fabricação e os critérios de projeto, a tecnologia SIW é aplicada ao projeto de três guias de ondas SIW nas bandas S e X, que foram fabricados empregando laminados de alta-frequência. Foram projetados dois filtros SIW passa-faixa empregando cavidades ressonantes e postes metálicos indutivos. Os dois filtros operam na frequência central de 10,61 GHz, sendo que um deles tem banda de passagem de 7,5%e é de 3ª ordem e o outro filtro tem banda de passagem de 15%, sendo de 5ª ordem. Foram realizadas comparações entre o desempenho simulado e experimental das estruturas SIW projetadas. Os resultados de simulações eletromagnéticas e experimentais demonstraram boa concordância. Os projetos em tecnologia SIW apresentados neste trabalho de pesquisa possuem perdas de retorno melhores que 10 dB na banda de operação e perdas por inserção de 1,0 dB a 1,5 dB. É apresentada a análise da sensibilidade do desempenho dos guias de ondas e filtros SIW projetados a desvios dimensionais típicos do processo de fabricação por microfresagem mecânica. Com os resultados experimentais e de simulação foi possível validar os procedimentos de projeto e de fabricação de circuitos SIW operando em frequências de micro-ondas.
Resumo:
This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed. © 2004 Elsevier Inc. All rights reserved.
Resumo:
A great deal of attention has recently been focused on a new class of smart materials-so-called left-handed media-that exhibit highly unusual electromagnetic properties and promise new device applications. Left-handed materials require negative permeability ν, an extreme condition that has so far been achieved only for frequencies in the microwave to terahertz range. Extension of the approach described in ref. 7 to achieve the necessary high-frequency magnetic response in visible optics presents a formidable challenge, as no material-natural or artificial-is known to exhibit any magnetism at these frequencies. Here we report a nanofabricated medium consisting of electromagnetically coupled pairs of gold dots with geometry carefully designed at a 10-nm level. The medium exhibits a strong magnetic response at visible-light frequencies, including a band with negative ν. The magnetism arises owing to the excitation of an antisymmetric plasmon resonance. The high-frequency permeability qualitatively reveals itself via optical impedance matching. Our results demonstrate the feasibility of engineering magnetism at visible frequencies and pave the way towards magnetic and left-handed components for visible optics. © 2005 Nature Publishing Group.
Resumo:
In this dissertation, are presented two microstrip antennas and two arrays for applications in wireless communication systems multiband. Initially, we studied an antenna and a linear array consisting of two elements identical to the patch antenna isolated. The shape of the patch used in both structures is based on fractal geometry and has multiband behavior. Next a new antenna is analyzed and a new array such as initial structure, but with the truncated ground plane, in order to obtain better bandwidths and return loss. For feeding the structures, we used microstrip transmission line. In the design of planar structures, was used HFSS software for the simulation. Next were built and measures electromagnetic parameters such as input impedance and return loss, using vector network analyzer in the telecommunications laboratory of Federal University of Rio Grande do Norte. The experimental results were compared with the simulated and showed improved return loss for the first array and also appeared a fourth band and increased directivity compared with the isolated antenna. The first two benefits are not commonly found in the literature. For structures with a truncated ground planes, the technique improved impedance matching, bandwidth and return loss when compared to the initial structure with filled ground planes. Moreover, these structures exhibited a better distribution of frequency, facilitating the adjustment of frequencies. Thus, it is expected that the planar structures presented in this study, particularly arrays may be suitable for specific applications in wireless communication systems when frequency multiband and wideband transmission signals are required.
Resumo:
This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).
Resumo:
This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).
Resumo:
The frequency responses of two 50 Hz and one 400 Hz induction machines have been measured experimentally over a frequency range of 1 kHz to 400 kHz. This study has shown that the stator impedances of the machines behave in a similar manner to a parallel resonant circuit, and hence have a resonant point at which the Input impedance of the machine is at a maximum. This maximum impedance point was found experimentally to be as low as 33 kHz, which is well within the switching frequency ranges of modern inverter drives. This paper investigates the possibility of exploiting the maximum impedance point of the machine, by taking it into consideration when designing an inverter, in order to minimize ripple currents due to the switching frequency. Minimization of the ripple currents would reduce torque pulsation and losses, increasing overall performance. A modified machine model was developed to take into account the resonant point, and this model was then simulated with an inverter to demonstrate the possible advantages of matching the inverter switching frequency to the resonant point. Finally, in order to experimentally verify the simulated results, a real inverter with a variable switching frequency was used to drive an induction machine. Experimental results are presented.
Resumo:
Electrical impedance tomography (EIT) is an imaging technique that attempts to reconstruct the impedance distribution inside an object from the impedance between electrodes placed on the object surface. The EIT reconstruction problem can be approached as a nonlinear nonconvex optimization problem in which one tries to maximize the matching between a simulated impedance problem and the observed data. This nonlinear optimization problem is often ill-posed, and not very suited to methods that evaluate derivatives of the objective function. It may be approached by simulated annealing (SA), but at a large computational cost due to the expensive evaluation process of the objective function, which involves a full simulation of the impedance problem at each iteration. A variation of SA is proposed in which the objective function is evaluated only partially, while ensuring boundaries on the behavior of the modified algorithm.
Resumo:
This article describes the simulation and characterization of an ultrasonic transducer using a new material called Rexolite to be used as a matching element. This transducer was simulated using a commercial piezoelectric ceramic PIC255 at 8 MHz. Rexolite, the new material, presents an excellent acoustic matching, specially in terms of the acoustic impedance of water. Finite elements simulations were used in this work. Rexolite was considered as a suitable material in the construction of the transducer due to its malleability and acoustic properties, to validate the simulations a prototype transducer was constructed. Experimental measurements were used to determine the resonance frequency of the prototype transducer. Simulated and experimental results were very similar showing that Rexolite may be an excellent matching, particularly for medical applications.
Resumo:
A expansão da tríplice continência em unidades com quatro ou mais elementos abriu novas perspectivas para a compreensão de comportamentos complexos, como a emergência de respostas que derivam da formação de classes de estímulos equivalentes e que modelam comportamentos simbólicos e conceituais. Na investigação experimental, o procedimento de matching to sample tem sido frequentemente empregado para estabelecer discriminações condicionais. Em particular, a obtenção do matching de identidade generalizado é considerada demonstrativa da aquisição dos conceitos de igualdade e diferença. Segundo argumentamos, o fato de se buscar a compreensão desses conceitos a partir de processos discriminativos condicionais pode ter sido responsável pelos frequentes fracassos em demonstrá-los em sujeitos não humanos. A falta de correspondência entre os processos discriminativos responsáveis por estabelecer a relação de reflexividade entre estímulos que formam classes equivalentes e o matching de identidade generalizado, nesse sentido, é aqui revista ao longo de estudos empíricos e discutida com respeito às suas implicações.