36 resultados para Immunoreaction
Resumo:
P>It is known that the development of diabetic complications in human pregnancy is directly related to the severity and the duration of this pathology. In this study, we developed a model of long-term type 1 diabetes to investigate its effects on the cytoarchitecture, extracellular matrix and cell proliferation during the first adaptation phase of the myometrium for pregnancy. A single dose of alloxan was used to induce diabetes in mice prior to pregnancy. To identify the temporal effects of diabetes the mice were divided into two groups: Group D1 (females that became pregnant 90-100 days after alloxan); Group D2 (females that became pregnant 100-110 days after alloxan). Uterine samples were collected after 168 h of pregnancy and processed for light and electron microscopy. In both groups the histomorphometric evaluation showed that diabetes promoted narrowing of the myometrial muscle layers which was correlated with decreased cell proliferation demonstrated by PCNA immunodetection. In D1, diabetes increased the distance between muscle layers and promoted oedema. Contrarily, in D2 the distance between muscle layers decreased and, instead of oedema, there was a markedly deposition of collagen in the myometrium. Ultrastructural analysis showed that diabetes affects the organization of the smooth muscle cells and their myofilaments. Consistently, the immunoreaction for smooth muscle alpha-actin revealed clear disorganization of the contractile apparatus in both diabetic groups. In conclusion, the present model demonstrated that long-term diabetes promotes significant alterations in the myometrium in a time-sensitive manner. Together, these alterations indicate that diabetes impairs the first phenotypic adaptation phase of the pregnant myometrium.
Resumo:
In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 292:138-153, 2009. (c) 2008 Wiley-Liss, Inc.
Resumo:
In amphibia, steroidogenesis remains quiescent in distinct seasonal periods, but the mechanism by which spermatogenesis is maintained under low steroidogenic conditions is not clear. In the present study, testosterone location in the testes of Rana catesbeiana was investigated immunohistochemically during breeding (summer) and nonbreeding (winter) periods. In winter, the scarce interstitial tissue exhibited occasional testosterone immunopositivity in the interstitial cells but the cytoplasm of primordial germ cells (PG cells) was clearly immunopositive. By contrast, in summer, PG cells contained little or no immunoreactivity whereas strong immunolabelling was present in the well-developed interstitial tissue. These results suggest that PG cells could retain testosterone during winter. This androgen reservoir could be involved in the control of early spermatogenesis in winter and/or to guarantee spermiogenesis and spermiation in the next spring/summer. The weak or negative immunoreaction in the summer PG cells might reflect consumption of androgen reservoir by the intense spermatogenic activity from spring to summer. Thus, besides acting as stem cells, PG cells of R. catesbeiana could exert an androgen regulatory role during seasonal spermatogenesis.
Resumo:
Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha 1 subunit (GlyR alpha 1), GABA(A), GABA(B), and subunits of alpha 2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyR alpha 1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of nor-adrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR. (C) 2008 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
TIMPs in the prostates of male and female gerbils and evaluated the effects of testosterone on the expression of these enzymes. Ventral prostates from male gerbils that were either intact or had been castrated for 7 or 21 days, along with prostates from female gerbils that were either intact or had been treated with testosterone for 7 or 21 days, were submitted to histological, stereological and immunohistochemical analyses. Stereology of prostatic components showed significant alterations of tissue compartments in the ventral male prostate after castration, especially after 21 days, with a significant increase in stroma. Administration of testosterone led to disorganization in the female prostate, with a significant increase in collagen fibers and smooth muscle cells after 21 days, along with the development of epithelial lesions such as PINs. MMP-2 increased after 21 days of castration in males; however, the TIMP-2 immunoreaction for this group was weak or absent. In females, the expression of MMP-2 appeared to decrease after 7 days of treatment with testosterone, but after 21 days, both epithelium and stroma showed a stronger reaction for MMP-2 than the controls. The expression of TIMP-2 in the treated females was similar to its expression in the castrated males. We conclude that the distribution of MMPs and TIMPs in both male and female prostates is altered by androgen manipulation, but the mechanism of stromal regulation appears to be distinct between genders because both the lack of T in castrated males and the excess levels of T in treated females lead to the same effect.
Resumo:
Aquaporins (AQPs), notably AQP-1 and AQP-9, may contribute to reabsorption of fluid and solute across the epididymis. Ethanol is related to be a toxicant affecting directly or indirectly the epididymis and the sperm motility. This study examined the expression of AQP-1 and AQP-9 in adult epididymis of the UChA and UChB 10% (v/v) ethanol-preferring rats, focusing the ethanol-induced hormonal disturbances upon the regulation of these AQPs. Chronic ethanol intake significantly decreased body weight, while UChA and UChB rats displayed a marked loss of epididymal weights. Both ethanol-consuming animals had a severe reduction of testosterone levels, whereas LH and 17β-estradiol were unchanged. Throughout the epididymis, a strong reaction to AQP-1 was observed in myoid and endothelial cells of the UChB ethanol-preferring rats, differently from a moderate intensity in the initial segment of the UChA rats. In addition, AQP-9 showed a strong immunoreaction in the apical membrane of principal cells at initial segment. In cauda epididymis, the level of AQP-9 was reduced along the microvillus projections in both UChA and UChB rats compared to controls. We conclude that chronic ethanol consumption modulates the androgen levels, thereby modifying the expression pattern of AQP-1 and 9 in the epididymis. © 2011 Elsevier Ltd.
Resumo:
Although canine visceral leishmaniasis (CVL) has been extensively studied, muscular damage due to Leishmania (Leishmania) infantum chagasi infection remains to be fully established. The aim of this study was to describe the electromyographic and histological changes, as well as search for the presence of amastigote forms of Leishmania spp, CD3+ T-lymphocytes, macrophages and IgG in skeletal muscles of dogs with visceral leishmaniasis (VL). Four muscles (triceps brachial, extensor carpi radialis, biceps femoris and gastrocnemius) from a total of 17 naturally infected and six healthy dogs were used in this study. Electromyographic alterations such as fibrillation potentials, positive sharp waves and complex repetitive discharges were observed in, at least, three muscles from all infected dogs. Myocyte necrosis and degeneration were the most frequent muscular injury seen, followed by inflammatory reaction, fibrosis and variation in muscle fibers size. Immunohistochemistry in muscle samples revealed amastigote forms in 4/17 (23. 53%), IgG in 12/17 (70. 58%), CD3+ T-lymphocytes in 16/17 (94. 12%) and macrophages in 17/17 (100%) dogs. Statistically positive correlation was observed between: inflammatory infiltrate (p=0. 0305) and CD3+ immunoreaction (p=0. 0307) in relation to the number of amastigote forms; inflammatory infiltrate (p=0. 0101) and macrophage immunoreaction (p=0. 0127) in relation to the amount of CD3+; and inflammatory infiltrate (p=0. 0044) and degeneration/necrosis (p<0. 0001) in relation to the presence of macrophages. Our results suggest that different mechanisms contribute to the development of myocytotoxicity, including celular and humoral immune responses and direct muscular injury by the parasite. Nevertheless, the catabolic nature of the disease can probably interact with other factors, but cannot be incriminated as the only responsible for myositis.
Resumo:
The female prostate is a differentiated organ found in several mammal species, including humans and rodents. This gland has been related to important functions on female reproductive biology. Although the factors, which regulate prostate's development and activity are not well known, its functionality has been related to steroid hormones. It is well established that cyclic changes of estradiol and progesterone levels promote histophysiological adaptations of the whole female body. In contrast, only a few is found about those adaptations in female prostate. Thus, this study aimed to evaluate the effect of estradiol and estradiol+testosterone association on gerbil female prostate in order to verify, which hormonal associations are necessary to its homeostasis. For this, adult females had the ovaries surgically removed. After recovering, they received estradiol and estradiol+testosterone doses through 30 days, each 48 h. The prostatic tissue underwent morphological and morphometric-estereological analysis. Hormonal restriction caused great gland involution and decreased secretory activity, aspects that were reverted by exposure to estradiol and estradiol+testosterone. However, these hormones were not able to re-establish the normal prostate histoarchitecture. The immunoreaction of steroid receptors (ER-α, ER-β, and AR) responded differently among the experimental and control groups, and PCNA assay showed a decrease in epithelial cell proliferation within groups that had hormone privation. Therefore, we conclude that estradiol and testosterone are able to influence prostate morphophysiology and the maintenance of gland homeostasis depends on a balance among these and other hormones. © 2013 Wiley Periodicals, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)