898 resultados para Immunization and pest control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amendments [issued by Plant Quarantine Division or Plant Pest Control Division.] (1 v. loose-leaf)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"P.O. #532463"--Colophon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V),compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G -V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid : host and predator : prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insects are an important and probably the most challenging pest to control in agriculture, in particular when they feed on belowground parts of plants. The application of synthetic pesticides is problematic owing to side effects on the environment, concerns for public health and the rapid development of resistance. Entomopathogenic bacteria, notably Bacillus thuringiensis and Photorhabdus/Xenorhabdus species, are promising alternatives to chemical insecticides, for they are able to efficiently kill insects and are considered to be environmentally sound and harmless to mammals. However, they have the handicap of showing limited environmental persistence or of depending on a nematode vector for insect infection. Intriguingly, certain strains of plant root-colonizing Pseudomonas bacteria display insect pathogenicity and thus could be formulated to extend the present range of bioinsecticides for protection of plants against root-feeding insects. These entomopathogenic pseudomonads belong to a group of plant-beneficial rhizobacteria that have the remarkable ability to suppress soil-borne plant pathogens, promote plant growth, and induce systemic plant defenses. Here we review for the first time the current knowledge about the occurrence and the molecular basis of insecticidal activity in pseudomonads with an emphasis on plant-beneficial and prominent pathogenic species. We discuss how this fascinating Pseudomonas trait may be exploited for novel root-based approaches to insect control in an integrated pest management framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic farming has increased in popularity in recent years, primarily as a response to the perceived health and conservation benefits. While it is likely that conventional farming will be able to respond rapidly to variations in pest numbers and distribution resulting from climatic change, it is not clear if the same is true for organic farming. Few studies have looked at the responses of biological control organisms to climate change. Here, I review the direct and indirect eects of changes in temperature, atmospheric carbon dioxide and other climatic factors on the predators, parasitoids and pathogens of pest insects in temperate agriculture. Finally, I consider what research is needed to manage the anticipated change in pest insect dynamics and distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Arthropods that have a direct impact on crop production (i.e. pests, natural enemies and pollinators) can be influenced by both local farm management and the context within which the fields occur in the wider landscape. However, the contributions and spatial scales at which these drivers operate and interact are not fully understood, particularly in the developing world. The impact of both local management and landscape context on insect pollinators and natural enemy communities and on their capacity to deliver related ecosystem services to an economically important tropical crop, pigeonpea was investigated. The study was conducted in nine paired farms across a gradient of increasing distance to semi-native vegetation in Kibwezi, Kenya. Results show that proximity of fields to semi-native habitats negatively affected pollinator and chewing insect abundance. Within fields, pesticide use was a key negative predictor of pollinator, pest and foliar active predator abundance. On the contrary, fertilizer application significantly enhanced pollinator and both chewing and sucking insect pest abundance. At a 1 km spatial scale of fields, there were significant negative effects of the number of semi-native habitat patches within fields dominated by mass flowering pigeonpea on pollinators abundance. For service provision, a significant decline in fruit set when insects were excluded from flowers was recorded. This study reveals the interconnections of pollinators, predators and pests with pigeonpea crop. For sustainable yields and to conserve high densities of both pollinators and predators of pests within pigeonpea landscapes, it is crucial to target the adoption of less disruptive farm management practices such as reducing pesticide and fertilizer inputs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paracoccidioidomycosis is a systemic granulomatous disease manifested in the acute/subacute or chronic forms. The anergic cases of the acute/subacute form are most severe, leading to death threatening conditions. Drug treatment is required to control the disease but the response in anergic patients is generally poor. A 15-mer peptide from the major diagnostic antigen gp43, named P10, induces a T-CD4(+) helper-1 immune response in mice of different haplotypes and protects against intratracheal challenge with virulent P. brasiliensis. Presently, P10 immunization and chemotherapy were associated in an attempt to improve antifungal treatment in Balb/c mice made anergic by adding dexamethasone to the drinking water. The combined drug/peptide treatment significantly reduced the lung CFUs in infected anergic mice, largely preserved lung alveolar structure and prevented fungal dissemination to liver and spleen. Results recommend that a P10-based vaccine should be associated to chemotherapy for improved treatment of paracoccidioidomycosis aiming especially at anergic cases. (C) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O uso de plantas inseticidas e de variedades pode ser forte aliado ao Manejo Integrado de Pragas (MIP), podendo reduzir o número de aplicações de inseticidas e minimizar seus efeitos ao homem e ao meio ambiente. em condições de campo, visando o controle de pragas tardias do tomateiro em duas cultivares de crescimento determinado, compararam-se as seguintes táticas de controle: a) Convencional - pulverizações com os produtos metamidofós, buprofezin, acefato, cipermetrina, abamectina, permetrina, teflubenzuron e lufenuron, aplicados em intervalos de três a seis dias; b) MIP - nível de ação de cada praga para aplicações de imidacloprid, triflumuron, lufenuron e abamectina; c) MIP - Azadirachta indica (nim) - nível de ação de cada praga para aplicações de óleo de nim (1,2% de azadiractina) a 0,5%. As táticas de controle MIP e MIP - nim foram eficientes no controle das pragas tardias do tomateiro, quando a pressão da população é baixa, não diferindo do tratamento convencional que apresentou as menores médias de infestação. As táticas de controle convencional, MIP e MIP-nim promoveram maiores produções do tomateiro, com incrementos de até 74%. O número de pulverizações foi reduzido em até 77% com as táticas MIP e MIP - nim, comparado ao método convencional. O produto nim pode ser alternativa promissora no controle de pragas tardias do tomateiro em campo, que se ajusta ao MIP.