928 resultados para Immune Escape
Resumo:
Many hepatitis C virus (HCV) infections worldwide are with the genotype 1 and 3 strains of the virus. Cellular immune responses are known to be important in the containment of HCV genotype 1 infection, and many genotype 1 T cell targets (epitopes) that are presented by host human leukocyte antigens (HLAs) have been identified. In contrast, there is almost no information known about the equivalent responses to genotype 3. Immune escape mechanisms used by HCV include the evolution of viral polymorphisms (adaptations) that abrogate this host-viral interaction. Evidence of HCV adaptation to HLA-restricted immune pressure on HCV can be observed at the population level as viral polymorphisms associated with specific HLA types. To evaluate the escape patterns of HCV genotypes 1 and 3, we assessed the associations between viral polymorphisms and specific HLA types from 187 individuals with genotype 1a and 136 individuals with genotype 3a infection. We identified 51 HLA-associated viral polymorphisms (32 for genotype 1a and 19 for genotype 3a). Of these putative viral adaptation sites, six fell within previously published epitopes. Only two HLA-associated viral polymorphisms were common to both genotypes. In the remaining sites with HLA-associated polymorphisms, there was either complete conservation or no significant HLA association with viral polymorphism in the alternative genotype. This study also highlights the diverse mechanisms by which viral evasion of immune responses may be achieved and the role of genotype variation in these processes. CONCLUSION: There is little overlap in HLA-associated polymorphisms in the nonstructural proteins of HCV for the two genotypes, implying differences in the cellular immune pressures acting on these viruses and different escape profiles. These findings have implications for future therapeutic strategies to combat HCV infection, including vaccine design.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Background: Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results: TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions: Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Objective Deregulation of FAS/FASL system may lead to immune escape and influence bacillus Calmette-Guérin (BCG) immunotherapy outcome, which is currently the gold standard adjuvant treatment for high-risk non–muscle invasive bladder tumors. Among other events, functional promoter polymorphisms of FAS and FASL genes may alter their transcriptional activity. Therefore, we aim to evaluate the role of FAS and FASL polymorphisms in the context of BCG therapy, envisaging the validation of these biomarkers to predict response. Patients and methods DNA extracted from peripheral blood from 125 patients with bladder cancer treated with BCG therapy was analyzed by Polymerase Chain Reaction—Restriction Fragment Length Polymorphism for FAS-670 A/G and FASL-844 T/C polymorphisms. FASL mRNA expression was analyzed by real-time Polymerase Chain Reaction. Results Carriers of FASL-844 CC genotype present a decreased recurrence-free survival after BCG treatment when compared with FASL-844 T allele carriers (mean 71.5 vs. 97.8 months, P = 0.030) and have an increased risk of BCG treatment failure (Hazard Ratio = 1.922; 95% Confidence Interval: [1.064–3.471]; P = 0.030). Multivariate analysis shows that FASL-844 T/C and therapeutics scheme are independent predictive markers of recurrence after treatment. The evaluation of FASL gene mRNA levels demonstrated that patients carrying FASL-844 CC genotype had higher FASL expression in bladder tumors (P = 0.0027). Higher FASL levels were also associated with an increased risk of recurrence after BCG treatment (Hazard Ratio = 2.833; 95% Confidence Interval: [1.012–7.929]; P = 0.047). FAS-670 A/G polymorphism analysis did not reveal any association with BCG therapy outcome. Conclusions Our results suggest that analysis of FASL-844 T/C, but not FAS-670 A/G polymorphisms, may be used as a predictive marker of response to BCG immunotherapy.
Resumo:
BACKGROUND: Bladder cancer is a significant health problem in rural areas of Africa and the Middle East where Schistosoma haematobium is prevalent, supporting an association between malignant transformation and infection by this blood fluke. Nevertheless, the molecular mechanisms linking these events are poorly understood. Bladder cancers in infected populations are generally diagnosed at a late stage since there is a lack of non-invasive diagnostic tools, hence enforcing the need for early carcinogenesis markers. METHODOLOGY/PRINCIPAL FINDINGS: Forty-three formalin-fixed paraffin-embedded bladder biopsies of S. haematobium-infected patients, consisting of bladder tumours, tumour adjacent mucosa and pre-malignant/malignant urothelial lesions, were screened for bladder cancer biomarkers. These included the oncoprotein p53, the tumour proliferation rate (Ki-67>17%), cell-surface cancer-associated glycan sialyl-Tn (sTn) and sialyl-Lewisa/x (sLea/sLex), involved in immune escape and metastasis. Bladder tumours of non-S. haematobium etiology and normal urothelium were used as controls. S. haematobium-associated benign/pre-malignant lesions present alterations in p53 and sLex that were also found in bladder tumors. Similar results were observed in non-S. haematobium associated tumours, irrespectively of their histological nature, denoting some common molecular pathways. In addition, most benign/pre-malignant lesions also expressed sLea. However, proliferative phenotypes were more prevalent in lesions adjacent to bladder tumors while sLea was characteristic of sole benign/pre-malignant lesions, suggesting it may be a biomarker of early carcionogenesis associated with the parasite. A correlation was observed between the frequency of the biomarkers in the tumor and adjacent mucosa, with the exception of Ki-67. Most S. haematobium eggs embedded in the urothelium were also positive for sLea and sLex. Reinforcing the pathologic nature of the studied biomarkers, none was observed in the healthy urothelium. CONCLUSION/SIGNIFICANCE: This preliminary study suggests that p53 and sialylated glycans are surrogate biomarkers of bladder cancerization associated with S. haematobium, highlighting a missing link between infection and cancer development. Eggs of S. haematobium express sLea and sLex antigens in mimicry of human leukocytes glycosylation, which may play a role in the colonization and disease dissemination. These observations may help the early identification of infected patients at a higher risk of developing bladder cancer and guide the future development of non-invasive diagnostic tests.
Resumo:
The var genes of Plasmodium falciparum code for the antigenically variant erythrocyte membrane proteins 1 (PfEMP1), a major factor for cytoadherence and immune escape of the parasite. Herein, we analyzed the var gene transcript turnover in two ongoing, non-symptomatic infections at sequential time points during two weeks. The number of different circulating genomes was estimated by microsatellite analyses. In both infections, we observed a rapid turnover of plasmodial genotypes and var transcripts. The rapidly changing repertoire of var transcripts could have been caused either by swift elimination of circulating var-transcribing parasites stemming from different or identical genetic backgrounds, or by accelerated switching of var gene transcription itself.
Resumo:
INTRODUCTION We report a case of pulmonary metastatic recurrence of renal adenocarcinoma soon after radical nephrectomy that was followed by renal transplant and immunosuppressive medication. Increased risk of metastatic recurrence of renal cell carcinoma should be considered in the immediate post-transplant period when immunosuppressive medication is administered, even if nephrectomy had been performed many years earlier. CASE PRESENTATION In 1986 the patient demonstrated renal insufficiency secondary to mesangial glomerulonephritis. In 1992 he underwent left side radical nephrectomy with histopathological diagnosis of clear cell adenocarcinoma. Mesangial glomerulonephritis in the remaining right kidney progressed to end-stage renal failure. In October 2000 he received a kidney transplant from a cadaver and commenced immunosuppressive medication. Two months later, several nodules were found in his lungs, which were identified as metastases from the primary renal tumor that had been removed with the diseased kidney 8 years earlier. CONCLUSION Recurrence of renal cell carcinoma metastases points to tumor dormancy and reflects a misbalance between effective tumor immune surveillance and immune escape. This case demonstrates that a state of tumor dormancy can be interrupted soon after administration of immunosuppressant medication.
Resumo:
Aims: The adaptive immune response against hepatitis C virus (HCV) is significantly shaped by the host's composition of HLA alleles. Thus, the HLA phenotype is a critical determinant of viral evolution during adaptive immune pressure. Potential associations of HLA class I alleles with polymorphisms of HCV immune escape variants are largely unknown. Methods: Direct sequence analysis of the genes encoding the HCV proteins E2, NS3 and NS5B in a cohort of 159 patients with chronic HCV genotype 1 infection who were treated with pegylated interferon-alfa 2b and ribavirin in a prospective controlled trial for 48 weeks was exhibited. HLA class I genotyping was performed by strand-specific reverse hybridization with the INNO-LiPA line probe assays for HLA-A and HLA-B and by strand-specific PCR-SSP. We analyzed each amino acid position of HCV proteins using an extension of Fisher's exact test for associations with HLA alleles. In addition, associations of specific HLA alleles with inflammatory activity, liver fibrosis, HCV RNA viral load and virologic treatment outcome were investigated. Results: Separate analyses of HCV subtype 1a and 1b isolates revealed substantially different patterns of HLA-restricted polymorphisms between subtypes. Only one polymorphism within NS5B (V2758x) was significantly associated with HLA B*15 in HCV genotype 1b infected patients (adjusted p=0,048). However, a number of HLA class I-restricted polymorphisms within novel putative HCV CD8+ T cell epitopes (genotype 1a: HLA-A*11 GTRTIASPK1086-1094 [NS3], HLA-B*07 WPAPQGARSL1111-1120 [NS3]; genotype 1b: HLA-A*24 HYAPRPCGI488-496 [E2], HLA-B*44 GENETDVLL530-538 [E2], HLA-B*15 RVFTEAMTRY2757-2766 [NS5B]) were observed with high predicted epitope binding scores assessed by the web-based software SYFPEITHI (>21). Most of the identified putative epitopes were overlapping with already otherwise published epitopes, indicating a high immunogenicity of the accordant HCV protein region. In addition, certain HLA class I alleles were associated with inflammatory activity, stage of liver fibrosis, and sustained virologic response to antiviral therapy. Conclusions: HLA class I restricted HCV sequence polymorphisms are rare. HCV polymorphisms identified within putative HCV CD8+ T cell epitopes in the present study differ in their genomic distribution between genotype 1a and 1b isolates, implying divergent adaptation to the host's immune pressure on the HCV subtype level.
Resumo:
SUMMARY : Detailed knowledge of the different components of the immune system is required for the development of new immunotherapeutic strategies. CD4 T lymphocytes represent a highly heterogeneous group of cells characterized by various profiles of cytokine production and effector vs. regulatory functions. They are central players in orchestrating adaptive immune responses: unbalances between the different subtypes can lead either to aggressive autoimmune disorders or can favour the uncontrolled growth of malignancies. In this study we focused on the characterization of human CD4 T cells in advanced stage melanoma patients as well as in patients affected by various forms of autoimmune inflammatory spondyloarthropathies. In melanoma patients we report that a population of FOXP3 CD4 T cells, known as regulatory T cells, is overrepresented in peripheral blood, and even more in tumor-infitrated lymph nodes as well as at tumor sites, as compared to healthy donors. In tumor-infiltrated lymph nodes, but not in normal lymph nodes or in peripheral blood, FOXP3 CD4 T cells feature a highly differentiated phenotype (CD45RA-CCR7+/-), which suggests for a recent encounter with their cognate antigen. FOXP3 CD4 T cells have been described to be an important component of the several known immune escape mechanisms. We demonstrated that FOXP3 CD4 T cells isolated from melanoma patients exert an in vitro suppressive action on autologous CD4 T cells, thus possibly inhibiting an efficient anti-tumor response. Next, we aimed to analyse CD4 T cells at antigen-specific level. In advanced stage melanoma patients, we identified for the first time, using pMHCII multimers, circulating CD4 T cells specific for the melanoma antigen Melan-A, presented by HLA-DQB1 *0602. Interestingly, in a cohort of melanoma patients enrolled in an immunotherapy trails consisting of injection of a Melan-A derived peptide, we did not observe signif cant variations in the ex vivo frequencies of Melan-A specific CD4 T cells, but important differences in the quality of the specific CD4 T cells. In fact, up to 50% of the ex vivo Melan-A/DQ6 specific CD4 T cells displayed a regulatory phenotype and were hypoproliferative before vaccination, while more effector, cytokine-secreting Melan-A/DQ6 specific CD4 T cells were observed after immunization. These observations suggest that peptide vaccination may favourably modify the balance between regulatory and effector tumor-specific CD4 T cells. Finally, we identified another subset of CD4 T cells as possible mediator of pathology in a group of human autoimmune spondyloarthropathies, namely Th17 cells. These cells were recently described to play a critical role in the pathogenesis of some marine models of autommunity. We document an elevated presence of circulating Th17 cells in two members of seronegative spondyloarthropathies, e.g. psoriatic arthritis and ankylosing spondylitis, while we do not observe increased frequencies of Th17 cells in peripheral blood of rheumatoid arthritic patients. In addition, Th17 cells with a more advanced differentiation state (CD45RA-CCR7-CD27-) and polyfunctionality (concomitant secretion of IL-17, IL-2 and TNFα) were observed exclusively in patients with seronegative spondylarthropathies. Together, our observations emphasize the importance of CD4 T cells in various diseases and suggest that immunotherapeutic approaches considering CD4 T cells as targets should be evaluated in the future.
Resumo:
Tumor-reactive T cells play an important role in cancer immunosurveillance. Applying the multimer technology, we report here an unexpected high frequency of Melan-A-specific CTLs in a melanoma patient with progressive lymph node metastases, consisting of 18 and 12.8% of total peripheral blood and tumor-infiltrating CD8+ T cells, respectively. Melan-A-specific CTLs revealed a high cytolytic activity against allogeneic Melan-A-expressing target cells but failed to kill the autologous tumor cells. Loading of the tumor cells with Melan-A peptide reversed the resistance to killing, suggesting impaired function of the MHC class I antigen processing and presentation pathway. Mutations of the coding region of the HLA-A2 binding Melan-A26-35 peptide or down-regulation of the MHC class I heavy chain, the antigenic peptide TAP, and tapasin could be excluded. However, PCR and immunohistochemical analysis revealed a deficiency of the immunoproteasomes low molecular weight protein 2 and low molecular weight protein 7 in the primary tumor cells, which affects the quantity and quality of generated T-cell epitopes and might explain the resistance to killing. This is supported by our data, demonstrating that the resistance to killing can be partially reversed by pre-exposure of the tumor cells to IFN-gamma, which is known to induce the immunoproteasomes. Overall, this is the first report of an extremely high frequency of tumor-specific CTLs that exhibit competent T-cell-effector functions but fail to lyse the autologous tumor cells. Immunotherapeutic approaches should not only focus on the induction of a robust antitumor immune response, but should also have to target tumor immune escape mechanisms.
Resumo:
Indoleamine 2,3-dioxygenase (IDO) is an important therapeutic target for the treatment of diseases such as cancer that involve pathological immune escape. We have used the evolutionary docking algorithm EADock to design new inhibitors of this enzyme. First, we investigated the modes of binding of all known IDO inhibitors. On the basis of the observed docked conformations, we developed a pharmacophore model, which was then used to devise new compounds to be tested for IDO inhibition. We also used a fragment-based approach to design and to optimize small organic molecule inhibitors. Both approaches yielded several new low-molecular weight inhibitor scaffolds, the most active being of nanomolar potency in an enzymatic assay. Cellular assays confirmed the potential biological relevance of four different scaffolds.
Resumo:
Indoleamine 2,3-dioxygenase 1 (IDO1) is an important therapeutic target for the treatment of diseases such as cancer that involve pathological immune escape. Starting from the scaffold of our previously discovered IDO1 inhibitor 4-phenyl-1,2,3-triazole, we used computational structure-based methods to design more potent ligands. This approach yielded highly efficient low molecular weight inhibitors, the most active being of nanomolar potency both in an enzymatic and in a cellular assay, while showing no cellular toxicity and a high selectivity for IDO1 over tryptophan 2,3-dioxygenase (TDO). A quantitative structure-activity relationship based on the electrostatic ligand-protein interactions in the docked binding modes and on the quantum chemically derived charges of the triazole ring demonstrated a good explanatory power for the observed activities.
Resumo:
THESIS SUMMARY : Metastasis is a multistep process involving tumour cell-autonomous features, the host tissue stroma of the primary tumour, the blood or lymphatic system as well as a receptive target organ. Most studies on factors influencing metastasis have concentrated on the characteristics of the disseminating tumour cell and on early steps of metastasis including invasion and angiogenesis. Although these steps are necessary for tumour cells to disseminate, it is the challenges encountered in the later steps of metastasis -survival while in the circulation and engraftment and outgrowth in the target organ -that account for the inefficiency of circulating tumour cells in establishing secondary lesions. Full understanding of the metastatic process therefore requires elucidation of the mechanisms that regulate these late steps, and in particular that determine what makes any given tissue permissive for metastatic tumour growth. To address this issue, we assessed the mechanisms whereby a physiological situation -pregnancy -can alter host permissiveness toward metastasis. We show that pregnant NOD/SCID mice -injected intravenously with tumour cells -develop more metastases than their non-pregnant counterparts irrespective of the tumour cell type. There was no direct effect of pregnancy-related circulating factors on tumour cell proliferation, and subcutaneous tumour growth does not vary between pregnant and nonpregnant animals. However, decreased elimination of tumour cells from the lung microvasculature was observed in pregnant mice, prompting us to assess whether pregnancy-related adaptations in innate immunity could account for this differential clearing. We found that natural killer (NK) cell fractions are decreased in blood and spleen of pregnant mice and that NK cell cytotoxicity is impaired, as reported previously. The use of NK-deficient mice or tumour cell lines resistant to NK killing abrogates the difference in metastasis load between pregnant and virgin mice. CD11 b+ Gr-1+ myeloid-derived suppressor cells (MDSC) have previously been shown to accumulate in tumour-bearing mice and to down-modulate NK activity. Accordingly, we show an increase in MDSC in pregnant mouse blood, spleen, lungs and liver. Depletion of MDSC prior to tumour cell injection decreased metastasis load in pregnant NOD/SCID mice but had no effect on virgin mice. Similarly, adoptive transfer of MDSC extracted from pregnant mice into virgin mice lead to increased metastasis take. In parallel, we investigated whether the lung and liver microenvironments are modified during pregnancy thereby providing a more "permissive soil" for the establishment of metastases. A comparative analysis of microarray data of pregnant mouse lungs and liver with "premetastatic niche" gene expression profiles of these organs shows that similar mechanisms could mediate an increase in lung and liver metastasis in pregnant mice and in mice harbouring an aggressive primary tumour. Several commonly up-regulated genes point towards the recruitment of myeloid cells, consistent with the accumulation of MDSC observed in pregnant mice. MDSC have never been evoked in the context of pregnancy before. Although the role of MDSC in pregnancy requires further investigation we suggest that MDSC accumulation constitutes an important and hitherto unrecognised common denominator of maternal immune tolerance and cancer immune escape. RESUME DE THESE : La métastatisation est un processus en plusieurs étapes qui implique des compétences particulières chez les cellules tumorales, le stroma de la tumeur primaire, les vaisseaux sanguins ou lymphatiques ainsi qu'un organe cible' réceptif. Jusqu'alors, la recherche s'est principalement intéressée aux facteurs qui influencent les étapes précoces de la métastatisation donc aux caractéristiques de la cellule métastatique, et aux processus tels que l'invasion et l'angiogenèse, tandis que peu d'études traitent des étapes tardives tel que la survie dans la circulation sanguine et l'établissement d'une lésion dans l'organe cible. En particulier, l'élucidation des facteurs qui déterminent la permissivité d'un tissu à la greffe de cellules disséminantes est indispensable à la compréhension de ce processus complexe qu'est la métastatisation. Nous proposons ici un modèle de souris récapitulant les étapes tardives de la métastatisation dans un contexte d'une permissivité accrue aux métastases chez la souris gravide, et nous évaluons les mécanismes impliqués. Les souris gestantes développent plus de métastases après l'injection intraveineuse de cellules tumorales, indépendamment du type de tumeur d'origine. Les taux élevés d'hormones et de facteurs de croissance chez la souris gravide n'inflúencent pas la prolifération des cellules tumorales et fa croissance de tumeurs sous-cutanées n'est pas non plus accélérée par la gestation. En revanche, une fois injectées, les cellules tumorales sont éliminées ` moins rapidement des vaisseaux pulmonaires chez la souris gravide que chez les contrôles. Cette observation est compatible avec un effet de la gestation sur l'immunité innée et nous avons mis en évidence une diminution des proportions de cellules NK (natural killer) dans le sang et la rate en particulier, ainsi qu'une cytotoxicité moindre envers des cellules tumorales. En utilisant des souris déficientes en cellules NK ou en injectant des cellules résistantes à l'attaqué par des cellules NK, la différence entre souris gestantes et non-gestantes disparaît. Il a été démontré chez des souris porteuses de tumeurs, que l'accumulation de cellules immunosuppressives de la lignée myélo-monocytaire (ou MDSC pour myeloid-derived suppressor tells) pouvait être responsable d'une inhibition de l'activité de cellules NK. Des nombres augmentés de ces cellules, caractérisées par les marqueurs de surface CD11b et Gr-1, ont été trouvés dans le sang, la rate, les poumons et le foie de souris gravides. Leur rôle dans la métastatisation est démontré par le fait que leur dépletion diminue le nombre de lésions secondaires chez la souris gestante, tandis que leur transfert dans des souris non-gestantes augmente le taux de métastases. L'utilisation de puces à ADN sur les foies et poumons de souris gravides a permis de mettre en évidence des différences d'expression génique proches de celles observées dans l'établissement de niches pré-métastatiques. Ceci suggère que des mécanismes similaires pourraient être responsables d'une permissivité accrue aux métastases chez la souris gravide et chez la souris porteuse d'une tumeur primaire agressive, telle que, en particulier, l'accumulation de cellules immunosuppressives dans les organes cibles. C'est la première fois que l'accumulation de MDSC est évoquée chez la souris gravide et nous proposons ici que celles-ci jouent un rôle dans la tolérance immunitaire envers le foetus et sont responsables de l'échappement de cellules tumorales injectées à la surveillance immunitaire par des cellules NK.
Resumo:
Cytotoxic T cells that are present in tumors and capable of recognizing tumor epitopes are nevertheless generally impotent in eliciting tumor rejection. Thus, identifying the immune escape mechanisms responsible for inducing tumor-specific CD8(+) T-cell dysfunction may reveal effective strategies for immune therapy. The inhibitory receptors PD-1 and Tim-3 are known to negatively regulate CD8(+) T-cell responses directed against the well-characterized tumor antigen NY-ESO-1. Here, we report that the upregulation of the inhibitory molecule BTLA also plays a critical role in restricting NY-ESO-1-specific CD8(+) T-cell expansion and function in melanoma. BTLA-expressing PD-1(+)Tim-3(-) CD8(+) T cells represented the largest subset of NY-ESO-1-specific CD8(+) T cells in patients with melanoma. These cells were partially dysfunctional, producing less IFN-γ than BTLA(-) T cells but more IFN-γ, TNF, and interleukin-2 than the highly dysfunctional subset expressing all three receptors. Expression of BTLA did not increase with higher T-cell dysfunction or upon cognate antigen stimulation, as it does with PD-1, suggesting that BTLA upregulation occurs independently of functional exhaustion driven by high antigen load. Added with PD-1 and Tim-3 blockades, BTLA blockade enhanced the expansion, proliferation, and cytokine production of NY-ESO-1-specific CD8(+) T cells. Collectively, our findings indicate that targeting BTLA along with the PD-1 and Tim-3 pathways is critical to reverse an important mechanism of immune escape in patients with advanced melanoma.
Hypoxia-inducible miR-210 regulates the susceptibility of tumor cells to lysis by cytotoxic T cells.
Resumo:
Hypoxia in the tumor microenvironment plays a central role in the evolution of immune escape mechanisms by tumor cells. In this study, we report the definition of miR-210 as a miRNA regulated by hypoxia in lung cancer and melanoma, documenting its involvement in blunting the susceptibility of tumor cells to lysis by antigen-specific cytotoxic T lymphocytes (CTL). miR-210 was induced in hypoxic zones of human tumor tissues. Its attenuation in hypoxic cells significantly restored susceptibility to autologous CTL-mediated lysis, independent of tumor cell recognition and CTL reactivity. A comprehensive approach using transcriptome analysis, argonaute protein immunoprecipitation, and luciferase reporter assay revealed that the genes PTPN1, HOXA1, and TP53I11 were miR-210 target genes regulated in hypoxic cells. In support of their primary importance in mediating the immunosuppressive effects of miR-210, coordinate silencing of PTPN1, HOXA1, and TP53I11 dramatically decreased tumor cell susceptibility to CTL-mediated lysis. Our findings show how miR-210 induction links hypoxia to immune escape from CTL-mediated lysis, by providing a mechanistic understanding of how this miRNA mediates immunosuppression in oxygen-deprived regions of tumors where cancer stem-like cells and metastatic cellular behaviors are known to evolve.