607 resultados para Imatges mèdiques
Resumo:
L’objectiu d’aquest projecte és ampliar la plataforma Starviewer integrant els mòdulsnecessaris per donar suport al diagnòstic de l’estenosi de caròtida permetentinterpretar de forma més fàcil les imatges Angiografia per Ressonància Magnètica(ARM). La plataforma Starviewer és un entorn informàtic que integra funcionalitatsbàsiques i avançades pel processament i la visualització d’imatges mèdiques. Estàdesenvolupat pel Grup d’Informàtica Gràfica de la Universitat de Girona i l’Institut deDiagnòstic per la Imatge (IDI) de l’hospital Dr. Josep Trueta. Una de les limitacions de la plataforma és el no suportar el tractament de lesions delsistema vascular. Per això ens proposem a corregir-ho i ampliar les seves extensionsper a poder diagnosticar l’estenosi de caròtida
Resumo:
This paper presents a technique to estimate and model patient-specific pulsatility of cerebral aneurysms over onecardiac cycle, using 3D rotational X-ray angiography (3DRA) acquisitions. Aneurysm pulsation is modeled as a time varying-spline tensor field representing the deformation applied to a reference volume image, thus producing the instantaneousmorphology at each time point in the cardiac cycle. The estimated deformation is obtained by matching multiple simulated projections of the deforming volume to their corresponding original projections. A weighting scheme is introduced to account for the relevance of each original projection for the selected time point. The wide coverage of the projections, together with the weighting scheme, ensures motion consistency in all directions. The technique has been tested on digital and physical phantoms that are realistic and clinically relevant in terms of geometry, pulsation and imaging conditions. Results from digital phantomexperiments demonstrate that the proposed technique is able to recover subvoxel pulsation with an error lower than 10% of the maximum pulsation in most cases. The experiments with the physical phantom allowed demonstrating the feasibility of pulsation estimation as well as identifying different pulsation regions under clinical conditions.
Resumo:
Mitjançant les tècniques de visió per computador aquest projecte pretén desenvolupar una aplicació capaç de segmentar la pell, detectar nevus (pigues i altres taques) i poder comparar imatges de pacients amb risc de contreure melanoma preses en moments diferents. Aquest projecte pretén oferir diferents eines informàtiques als dermatòlegs per a propòsits relacionats amb la investigació. L’ objectiu principal d’ aquest projecte és desenvolupar un sistema informàtic que proporcioni als dermatòlegs agilitat a l’hora de gestionar les dades dels pacients amb les sevesimatges corresponents, ajudar-los en la realització de deteccions dels nevus d’aquestes imatges, i ajudar-los en la comparació d’exploracions (amb les deteccions realitzades)de diferents èpoques d’un mateix pacient
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated. We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be solved.
Resumo:
In order to develop applications for z;isual interpretation of medical images, the early detection and evaluation of microcalcifications in digital mammograms is verg important since their presence is oftenassociated with a high incidence of breast cancers. Accurate classification into benign and malignant groups would help improve diagnostic sensitivity as well as reduce the number of unnecessa y biopsies. The challenge here is the selection of the useful features to distinguish benign from malignant micro calcifications. Our purpose in this work is to analyse a microcalcification evaluation method based on a set of shapebased features extracted from the digitised mammography. The segmentation of the microcalcificationsis performed using a fixed-tolerance region growing method to extract boundaries of calcifications with manually selected seed pixels. Taking into account that shapes and sizes of clustered microcalcificationshave been associated with a high risk of carcinoma based on digerent subjective measures, such as whether or not the calcifications are irregular, linear, vermiform, branched, rounded or ring like, our efforts were addressed to obtain a feature set related to the shape. The identification of the pammeters concerning the malignant character of the microcalcifications was performed on a set of 146 mammograms with their real diagnosis known in advance from biopsies. This allowed identifying the following shape-based parameters as the relevant ones: Number of clusters, Number of holes, Area, Feret elongation, Roughness, and Elongation. Further experiments on a set of 70 new mammogmms showed that the performance of the classification scheme is close to the mean performance of three expert radiologists, which allows to consider the proposed method for assisting the diagnosis and encourages to continue the investigation in the senseof adding new features not only related to the shape
Resumo:
A new approach to mammographic mass detection is presented in this paper. Although different algorithms have been proposed for such a task, most of them are application dependent. In contrast, our approach makes use of a kindred topic in computer vision adapted to our particular problem. In this sense, we translate the eigenfaces approach for face detection/classification problems to a mass detection. Two different databases were used to show the robustness of the approach. The first one consisted on a set of 160 regions of interest (RoIs) extracted from the MIAS database, being 40 of them with confirmed masses and the rest normal tissue. The second set of RoIs was extracted from the DDSM database, and contained 196 RoIs containing masses and 392 with normal, but suspicious regions. Initial results demonstrate the feasibility of using such approach with performances comparable to other algorithms, with the advantage of being a more general, simple and cost-effective approach
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal
Resumo:
Este trabajo de fin de grado plantea probar la viabilidad de realizar un sistema de almacenamiento y distribución de imágenes médicas, utilizando únicamente software de código abierto, libre distribución o gratuito.
Desenvolupament d'interfícies d'usuari i visualització d'imatge mèdica en dispositius mòbils Android
Resumo:
Aquest treball tracta sobre la realització d’una aplicació per a dispositius Android que permeti visualitzar imatges mèdiques. Amb la col·laboració del parc Taulí de Sabadell s’han realitzat tasques de recerca de requeriments com l’elaboració d’una entrevista o la realització d’una maqueta de paper que s’ha sotmès a una avaluació heurística en un procés iteratiu. Finalment, s’ha implementat una aplicació on es poden visualitzar imatges mèdiques, fer accions sobre elles com canviar el color o fer zoom i accedir a informació del pacient.
Resumo:
Mitjançant les tècniques de visió per computador aquest projecte pretén desenvolupar una aplicació capaç de segmentar la pell, detectar nevus (pigues i altres taques) i poder comparar imatges de pacients amb risc de contreure melanoma preses en moments diferents. Aquest projecte pretén oferir diferents eines informàtiques als dermatòlegs per a propòsits relacionats amb la investigació. L’ objectiu principal d’ aquest projecte és desenvolupar un sistema informàtic que proporcioni als dermatòlegs agilitat a l’hora de gestionar les dades dels pacients amb les sevesimatges corresponents, ajudar-los en la realització de deteccions dels nevus d’aquestes imatges, i ajudar-los en la comparació d’exploracions (amb les deteccions realitzades)de diferents èpoques d’un mateix pacient
Resumo:
L’objectiu principal d’aquest projecte era implementar la visualització 3D de models fusionats i aplicar totes les tècniques possibles per realitzar aquesta fusió. Aquestes tècniques s’integraran en la plataforma de visualització i processament de dades mèdiques STARVIEWER. Per assolir l’ objectiu principal s’ han definit els següents objectius específics:1- estudiar els algoritmes de visualització de models simples i analitzar els diferents paràmetres a tenir en compte. 2- ampliació de la tècnica de visualització bàsica seleccionada per tal de suportar els models fusionats. 3- avaluar i compar tots els mètodes implementats per poder determinar quin ofereix les millors visualitzacions
Resumo:
Estudi, disseny i implementació d’un algorisme de visualització de volums i integrar-lo en la plataforma DTIWeb de visualització i processament de dades de DTI. La plataforma DTIWeb és una plataforma desenvolupada conjuntament entre el Laboratori de Gràfics i Imatge de la Universitat de Girona i d’Institut de Diagnòstic per la imatge de l’Hospital Josep Trueta de Girona. Aquesta plataforma integra els mètodes bàsics de reconstrucció de fibres del cervell. La principal limitació de la plataforma és que no suporta la visualització de models 3D. Aquest fet limita el seu us en la pràctica clínica habitual ja que es fa difícil la interpretació dels mapes de connectivitat que genera
Resumo:
We present a new approach to model and classify breast parenchymal tissue. Given a mammogram, first, we will discover the distribution of the different tissue densities in an unsupervised manner, and second, we will use this tissue distribution to perform the classification. We achieve this using a classifier based on local descriptors and probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature. We studied the influence of different descriptors like texture and SIFT features at the classification stage showing that textons outperform SIFT in all cases. Moreover we demonstrate that pLSA automatically extracts meaningful latent aspects generating a compact tissue representation based on their densities, useful for discriminating on mammogram classification. We show the results of tissue classification over the MIAS and DDSM datasets. We compare our method with approaches that classified these same datasets showing a better performance of our proposal