987 resultados para Image orientation
Resumo:
The cellular rheology has recently undergone a rapid development with particular attention to the cytoskeleton mechanical properties and its main components - actin filaments, intermediate filaments, microtubules and crosslinked proteins. However it is not clear what are the cellular structural changes that directly affect the cell mechanical properties. Thus, in this work, we aimed to quantify the structural rearrangement of these fibers that may emerge in changes in the cell mechanics. We created an image analysis platform to study smooth muscle cells from different arteries: aorta, mammary, renal, carotid and coronary and processed respectively 31, 29, 31, 30 and 35 cell image obtained by confocal microscopy. The platform was developed in Matlab (MathWorks) and it uses the Sobel operator to determine the actin fiber image orientation of the cell, labeled with phalloidin. The Sobel operator is used as a filter capable of calculating the pixel brightness gradient, point to point, in the image. The operator uses vertical and horizontal convolution kernels to calculate the magnitude and the angle of the pixel intensity gradient. The image analysis followed the sequence: (1) opens a given cells image set to be processed; (2) sets a fix threshold to eliminate noise, based on Otsu's method; (3) detect the fiber edges in the image using the Sobel operator; and (4) quantify the actin fiber orientation. Our first result is the probability distribution II(Δθ) to find a given fiber angle deviation (Δθ) from the main cell fiber orientation θ0. The II(Δθ) follows an exponential decay II(Δθ) = Aexp(-αΔθ) regarding to its θ0. We defined and determined a misalignment index α of the fibers of each artery kind: coronary αCo = (1.72 ‘+ or =’ 0.36)rad POT -1; renal αRe = (1.43 + or - 0.64)rad POT -1; aorta αAo = (1.42 + or - 0.43)rad POT -1; mammary αMa = (1.12 + or - 0.50)rad POT -1; and carotid αCa = (1.01 + or - 0.39)rad POT -1. The α of coronary and carotid are statistically different (p < 0.05) among all analyzed cells. We discussed our results correlating the misalignment index data with the experimental cell mechanical properties obtained by using Optical Magnetic Twisting Cytometry with the same group of cells.
Resumo:
Depuis le 1er septembre 1997, cinq professionnels ont accès à la pratique de la médiation familiale. Les conseillers d'orientation sont de ce nombre et ils sont les professionnels les moins bien représentés en médiation familiale et ce, à plusieurs points de vue. Ce mémoire pose l'hypothèse que les conseillers d'orientation ont de la difficulté à s'imposer dans cette pratique parce qu'ils ont un problème d'identité professionnelle qui les empêche de convaincre de leur pertinence en tant qu'intervenants. Balisé par un contexte théorique à caractère sociologique reposant sur les concepts de rhétorique professionnelle (Paradeise, 1985) et d'espace professionnel (Bourdon, 1994), les transcriptions des débats tenus en commission parlementaire sur la médiation familiale ont été analysés à l'aide d'une méthodologie qualitative. Il appert que les conseillers d'orientation n'ont su utiliser correctement les éléments de rhétorique professionnelle, et par surcroît, ils ont été les grandes victimes des tactiques utilisées par les autres acteurs.
Resumo:
Stereo vision is a method of depth perception, in which depth information is inferred from two (or more) images of a scene, taken from different perspectives. Applications of stereo vision include aerial photogrammetry, autonomous vehicle guidance, robotics, industrial automation and stereomicroscopy. A key issue in stereo vision is that of image matching, or identifying corresponding points in a stereo pair. The difference in the positions of corresponding points in image coordinates is termed the parallax or disparity. When the orientation of the two cameras is known, corresponding points may be projected back to find the location of the original object point in world coordinates. Matching techniques are typically categorised according to the nature of the matching primitives they use and the matching strategy they employ. This report provides a detailed taxonomy of image matching techniques, including area based, transform based, feature based, phase based, hybrid, relaxation based, dynamic programming and object space methods. A number of area based matching metrics as well as the rank and census transforms were implemented, in order to investigate their suitability for a real-time stereo sensor for mining automation applications. The requirements of this sensor were speed, robustness, and the ability to produce a dense depth map. The Sum of Absolute Differences matching metric was the least computationally expensive; however, this metric was the most sensitive to radiometric distortion. Metrics such as the Zero Mean Sum of Absolute Differences and Normalised Cross Correlation were the most robust to this type of distortion but introduced additional computational complexity. The rank and census transforms were found to be robust to radiometric distortion, in addition to having low computational complexity. They are therefore prime candidates for a matching algorithm for a stereo sensor for real-time mining applications. A number of issues came to light during this investigation which may merit further work. These include devising a means to evaluate and compare disparity results of different matching algorithms, and finding a method of assigning a level of confidence to a match. Another issue of interest is the possibility of statistically combining the results of different matching algorithms, in order to improve robustness.
Resumo:
A system is described for calculating volume from a sequence of multiplanar 2D ultrasound images. Ultrasound images are captured using a video digitising card (Hauppauge Win/TV card) installed in a personal computer, and regions of interest transformed into 3D space using position and orientation data obtained from an electromagnetic device (Polbemus, Fastrak). The accuracy of the system was assessed by scanning 10 water filled balloons (13-141 ml), 10 kidneys (147 200 ml) and 16 fetal livers (8 37 ml) in water using an Acuson 128XP/10 (5 MHz curvilinear probe). Volume was calculated using the ellipsoid, planimetry, tetrahedral and ray tracing methods and compared with the actual volume measured by weighing (balloons) and water displacement (kidneys and livers). The mean percentage error for the ray tracing method was 0.9 ± 2.4%, 2.7 ± 2.3%, 6.6 ± 5.4% for balloons, kidneys and livers, respectively. So far the system has been used clinically to scan fetal livers and lungs, neonate brain ventricles and adult prostate glands.
Resumo:
This thesis introduces improved techniques towards automatically estimating the pose of humans from video. It examines a complete workflow to estimating pose, from the segmentation of the raw video stream to extract silhouettes, to using the silhouettes in order to determine the relative orientation of parts of the human body. The proposed segmentation algorithms have improved performance and reduced complexity, while the pose estimation shows superior accuracy during difficult cases of self occlusion.
Resumo:
Long-running debates over the value of university-based journalism education have suffered from a lack of empirical foundation, leading to a wide range of assertions both from those who see journalism education playing a crucial role in moulding future journalists and those who do not. Based on a survey of 320 Australian journalism students from six universities across the country, this study provides an account of the professional views these future journalists hold. Findings show that students hold broadly similar priorities in their role perceptions, albeit to different intensities from working journalists. The results point to a relationship between journalism education and the way in which students' views of journalism's watchdog role and its market orientation change over the course of their degree – to the extent that, once they are near completion of their degree, students have been moulded in the image of industry professionals.
Resumo:
We propose a new information-theoretic metric, the symmetric Kullback-Leibler divergence (sKL-divergence), to measure the difference between two water diffusivity profiles in high angular resolution diffusion imaging (HARDI). Water diffusivity profiles are modeled as probability density functions on the unit sphere, and the sKL-divergence is computed from a spherical harmonic series, which greatly reduces computational complexity. Adjustment of the orientation of diffusivity functions is essential when the image is being warped, so we propose a fast algorithm to determine the principal direction of diffusivity functions using principal component analysis (PCA). We compare sKL-divergence with other inner-product based cost functions using synthetic samples and real HARDI data, and show that the sKL-divergence is highly sensitive in detecting small differences between two diffusivity profiles and therefore shows promise for applications in the nonlinear registration and multisubject statistical analysis of HARDI data.
Resumo:
Acoustic recordings of the environment provide an effective means to monitor bird species diversity. To facilitate exploration of acoustic recordings, we describe a content-based birdcall retrieval algorithm. A query birdcall is a region of spectrogram bounded by frequency and time. Retrieval depends on a similarity measure derived from the orientation and distribution of spectral ridges. The spectral ridge detection method caters for a broad range of birdcall structures. In this paper, we extend previous work by incorporating a spectrogram scaling step in order to improve the detection of spectral ridges. Compared to an existing approach based on MFCC features, our feature representation achieves better retrieval performance for multiple bird species in noisy recordings.
Resumo:
Fingerprints are used for identification in forensics and are classified into Manual and Automatic. Automatic fingerprint identification system is classified into Latent and Exemplar. A novel Exemplar technique of Fingerprint Image Verification using Dictionary Learning (FIVDL) is proposed to improve the performance of low quality fingerprints, where Dictionary learning method reduces the time complexity by using block processing instead of pixel processing. The dynamic range of an image is adjusted by using Successive Mean Quantization Transform (SMQT) technique and the frequency domain noise is reduced using spectral frequency Histogram Equalization. Then, an adaptive nonlinear dynamic range adjustment technique is utilized to determine the local spectral features on corresponding fingerprint ridge frequency and orientation. The dictionary is constructed using spatial fundamental frequency that is determined from the spectral features. These dictionaries help in removing the spurious noise present in fingerprints and reduce the time complexity by using block processing instead of pixel processing. Further, dictionaries are used to reconstruct the image for matching. The proposed FIVDL is verified on FVC database sets and Experimental result shows an improvement over the state-of-the-art techniques. (C) 2015 The Authors. Published by Elsevier B.V.
Resumo:
This paper describes an efficient vision-based global topological localization approach that uses a coarse-to-fine strategy. Orientation Adjacency Coherence Histogram (OACH), a novel image feature, is proposed to improve the coarse localization. The coarse localization results are taken as inputs for the fine localization which is carried out by matching Harris-Laplace interest points characterized by the SIFT descriptor. Computation of OACHs and interest points is efficient due to the fact that these features are computed in an integrated process. We have implemented and tested the localization system in real environments. The experimental results demonstrate that our approach is efficient and reliable in both indoor and outdoor environments. © 2006 IEEE.
Resumo:
Compared with other existing methods, the feature point-based image watermarking schemes can resist to global geometric attacks and local geometric attacks, especially cropping and random bending attacks (RBAs), by binding watermark synchronization with salient image characteristics. However, the watermark detection rate remains low in the current feature point-based watermarking schemes. The main reason is that both of feature point extraction and watermark embedding are more or less related to the pixel position, which is seriously distorted by the interpolation error and the shift problem during geometric attacks. In view of these facts, this paper proposes a geometrically robust image watermarking scheme based on local histogram. Our scheme mainly consists of three components: (1) feature points extraction and local circular regions (LCRs) construction are conducted by using Harris-Laplace detector; (2) a mechanism of grapy theoretical clustering-based feature selection is used to choose a set of non-overlapped LCRs, then geometrically invariant LCRs are completely formed through dominant orientation normalization; and (3) the histogram and mean statistically independent of the pixel position are calculated over the selected LCRs and utilized to embed watermarks. Experimental results demonstrate that the proposed scheme can provide sufficient robustness against geometric attacks as well as common image processing operations. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
With the digital all-sky imager (ASI) emergence in aurora research, millions of images are captured annually. However, only a fraction of which can be actually used. To address the problem incurred by low efficient manual processing, an integrated image analysis and retrieval system is developed. For precisely representing aurora image, macroscopic and microscopic features are combined to describe aurora texture. To reduce the feature dimensionality of the huge dataset, a modified local binary pattern (LBP) called ALBP is proposed to depict the microscopic texture, and scale-invariant Gabor and orientation-invariant Gabor are employed to extract the macroscopic texture. A physical property of aurora is inducted as region features to bridge the gap between the low-level visual features and high-level semantic description. The experiments results demonstrate that the ALBP method achieves high classification rate and low computational complexity. The retrieval simulation results show that the developed retrieval system is efficient for huge dataset. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt-and pepper-type noise. Second, considering the local geometrical features, e. g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.