858 resultados para Idiopathic Parkinson disease
Resumo:
OBJECT: The goal of this study was to investigate the efficacy of long-term deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus (GPi) accomplished using a single-contact monopolar electrode in patients with advanced Parkinson disease (PD). METHODS: Sixteen patients suffering from severe PD and levodopa-induced side effects such as dyskinesias and on-off fluctuations were enrolled in a prospective study protocol. There were six women and 10 men and their mean age at surgery was 65 years. All patients underwent implantation of a monopolar electrode in the posteroventral lateral GPi. Initially, nine patients received unilateral stimulation. Three of these patients underwent contralateral surgery at a later time. Ten patients received bilateral stimulation (contemporaneous bilateral surgery was performed in seven patients and staged bilateral surgery in the three patients who had received unilateral stimulation initially). Formal assessments were performed during both off-medication and on-medication (levodopa) periods preoperatively, and at 3 and 12 months postoperatively. There were no serious complications related to surgery or to DBS. Two transient adverse events occurred: in one patient a small pallidal hematoma developed, resulting in a prolonged micropallidotomy effect, and in another patient a subcutaneous hemorrhage occurred at the site of the pacemaker. In patients who received unilateral DBS, the Unified Parkinson's Disease Rating Scale activities of daily living (ADL) score during the off-levodopa period decreased from 30.8 at baseline to 20.4 at 3 months (34% improvement) and 20.6 at 12 months (33% improvement) postoperatively. The motor score during the off period improved from 57.2 at baseline to 35.2 at 3 months (38% improvement) and 35.3 at 12 months (38% improvement) postoperatively. Bilateral DBS resulted in a reduction in the ADL score during the off period from 34.9 at baseline to 22.3 at 3 months (36% improvement) and 22.9 at 12 months (34% improvement). The motor score for the off period changed from 63.4 at baseline to 40.3 at 3 months (36% improvement) and 37.5 at 12 months (41% improvement). In addition, there were significant improvements in patients' symptoms during the on period and in on-off motor fluctuations. CONCLUSIONS: Pallidal DBS accomplished using a monopolar electrode is a safe and effective procedure for treatment of advanced PD. Compared with pallidotomy, the advantages of pallidal DBS lie in its reversibility and the option to perform bilateral surgery in one session. Comparative studies in which DBS is applied to other targets are needed.
Resumo:
OBJECTIVE: To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD) with deficient haptic perception. METHODS: Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. RESULTS: We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. CONCLUSION: PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.
Resumo:
OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Characteristics of visual hallucinations in Parkinson disease dementia and dementia with Lewy bodies
Resumo:
OBJECTIVE Parkinson disease dementia (PDD) and dementia with Lewy bodies (DLB) have overlapping clinical and pathologic features. Recurrent visual hallucinations (RVH) are common in both disorders. The authors have compared details of hallucination characteristics and associated neuropsychiatric features in DLB and PDD. METHODS This is a descriptive, cross-sectional study using the Institute of Psychiatry Visual Hallucinations Interview (IP-VHI) to explore self-reported frequency, duration, and phenomenology of RVH in PDD and DLB. The caregivers' ratings of hallucinations and other neuropsychiatric features were elicited with the Neuropsychiatric Inventory (NPI). RESULTS Fifty-six patients (35 PDD; 21 DLB) with RVH were assessed. Hallucination characteristics were similar in both disorders. Simple hallucinations were rare. Most patients experienced complex hallucinations daily, normally lasting minutes. They commonly saw people or animals and the experiences were usually perceived as unpleasant. NPI anxiety scores were higher in PDD. Neuropsychiatric symptoms coexisting with hallucinations were apathy, sleep disturbance, and anxiety. CONCLUSIONS Patients with mild to moderate dementia can provide detailed information about their hallucinations. Characteristics of RVH were similar in PDD and DLB, and phenomenology suggests the involvement of dorsal and ventral visual pathways in their generation. The coexistence of RVH with anxiety, apathy, and sleep disturbance is likely to impair patients' quality of life and may have treatment implications.
Resumo:
OBJECTIVE To quantify visual discrimination, space-motion, and object-form perception in patients with Parkinson disease dementia (PDD), dementia with Lewy bodies (DLB), and Alzheimer disease (AD). METHODS The authors used a cross-sectional study to compare three demented groups matched for overall dementia severity (PDD: n = 24; DLB: n = 20; AD: n = 23) and two age-, sex-, and education-matched control groups (PD: n = 24, normal controls [NC]: n = 25). RESULTS Visual perception was globally more impaired in PDD than in nondemented controls (NC, PD), but was not different from DLB. Compared to AD, PDD patients tended to perform worse in all perceptual scores. Visual perception of patients with PDD/DLB and visual hallucinations was significantly worse than in patients without hallucinations. CONCLUSIONS Parkinson disease dementia (PDD) is associated with profound visuoperceptual impairments similar to dementia with Lewy bodies (DLB) but different from Alzheimer disease. These findings are consistent with previous neuroimaging studies reporting hypoactivity in cortical areas involved in visual processing in PDD and DLB.
Resumo:
BACKGROUND: Excessive and abnormal accumulation of alpha-synuclein (α-synuclein) is a factor contributing to pathogenic cell death in Parkinson's disease. The purpose of this study, based on earlier observations of Parkinson's disease cerebrospinal fluid (PD-CSF) initiated cell death, was to determine the effects of CSF from PD patients on the functionally different microglia and astrocyte glial cell lines. Microglia cells from human glioblastoma and astrocytes from fetal brain tissue were cultured, grown to confluence, treated with fixed concentrations of PD-CSF, non-PD disease control CSF, or control no-CSF medium, then photographed and fluorescently probed for α-synuclein content by deconvolution fluorescence microscopy. Outcome measures included manually counted cell growth patterns from day 1-8; α-synuclein density and distribution by antibody tagged 3D model stacked deconvoluted fluorescent imaging. RESULTS: After PD-CSF treatment, microglia growth was reduced extensively, and a non-confluent pattern with morphological changes developed, that was not evident in disease control CSF and no-CSF treated cultures. Astrocyte growth rates were similarly reduced by exposure to PD-CSF, but morphological changes were not consistently noted. PD-CSF treated microglia showed a significant increase in α-synuclein content by day 4 compared to other treatments (p ≤ 0.02). In microglia only, α-synuclein aggregated and redistributed to peri-nuclear locations. CONCLUSIONS: Cultured microglia and astrocytes are differentially affected by PD-CSF exposure compared to non-PD-CSF controls. PD-CSF dramatically impacts microglia cell growth, morphology, and α-synuclein deposition compared to astrocytes, supporting the hypothesis of cell specific susceptibility to PD-CSF toxicity.
Resumo:
OBJECTIVE To further determine the causes of variable outcome from deep brain stimulation of the subthalamic nucleus (DBS-STN) in patients with Parkinson disease (PD). METHODS Data were obtained from our cohort of 309 patients with PD who underwent DBS-STN between 1996 and 2009. We examined the relationship between the 1-year motor, cognitive, and psychiatric outcomes and (1) preoperative PD clinical features, (2) MRI measures, (3) surgical procedure, and (4) locations of therapeutic contacts. RESULTS Pre- and postoperative results were obtained in 262 patients with PD. The best motor outcome was obtained when stimulating contacts were located within the STN as compared with the zona incerta (64% vs 49% improvement). Eighteen percent of the patients presented a postoperative cognitive decline, which was found to be principally related to the surgical procedure. Other factors predictive of poor cognitive outcome were perioperative confusion and psychosis. Nineteen patients showed a stimulation-induced hypomania, which was related to both the form of the disease (younger age, shorter disease duration, higher levodopa responsiveness) and the ventral contact location. Postoperative depression was more frequent in patients already showing preoperative depressive and/or residual axial motor symptoms. CONCLUSION In this homogeneous cohort of patients with PD, we showed that (1) the STN is the best target to improve motor symptoms, (2) postoperative cognitive deficit is mainly related to the surgery itself, and (3) stimulation-induced hypomania is related to a combination of both the disease characteristics and a more ventral STN location.
Resumo:
OBJECTIVE Visual hallucinations (VHs) are a very personal experience, and it is not clear whether information about them is best provided by informants or patients. Some patients may not share their hallucinatory experiences with caregivers to avoid distress or for fear of being labeled insane, and others do not have informants at all, which limits the use of informant-based questionnaires. The aim of this study was to compare patient and caregiver views about VHs in Parkinson disease (PD), using the North-East Visual Hallucinations Interview (NEVHI). METHODS Fifty-nine PD patient-informant pairs were included. PD patients and informants were interviewed separately about VHs using the NEVHI. Informants were additionally interviewed using the four-item version of the Neuropsychiatric Inventory. Inter-reliability and concurrent validity of the different measures were compared. RESULTS VHs were more commonly reported by patients than informants. The inter-rater agreement between NEVHI-patient and NEVHI-informant was moderate for complex VHs (Cohen's kappa = 0.44; 95% confidence interval [CI]: 0.13-0.75; t = 3.43, df = 58, p = 0.001) and feeling of presence (Cohen's kappa = 0.35; 95% CI: 0.00-0.70; t = 2.75, df = 58, p = 0.006), but agreement was poor for illusions (Cohen's kappa = 0.25; 95% CI: -0.07-0.57; t = 2.36, df = 58, p = 0.018) and passage hallucinations (Cohen's kappa = 0.16; 95% CI: -0.04-0.36; t = 2.26, df = 58, p = 0.024). CONCLUSION When assessing VHs in PD patients, it is best to rely on patient information, because not all patients share the details of their hallucinations with their caregivers.
Resumo:
Parkinson disease (PD) is a movement disorder affecting over one million Americans, and 1% of our population over 60 years of age. Currently, PD has an unknown cause, no predictive biomarker, and no cure, yet there are effective treatments (medicine and surgery) to chronically manage the motor symptoms. But, PD patients also develop cognitive symptoms (e.g., distractibility, executive dysfunction) that remain untreated or may decline as a result of treating the motor symptoms. To address this important issue, I measured covert orienting of attention and overt eye movements in PD patients to assess the patients' ability to automatically detect stimuli in their visual field, to predict and attend to where the stimuli would appear, and to volitionally look somewhere else. ^ PD patients completed the cognitive tasks under multiple treatment conditions, and their performance was compared to healthy adults. PD patients first completed the tasks after they had withdrawn from medication. Their unmedicated performance revealed exaggerated automatic orienting, poor predictability, and weak volitional orienting. PD patients then repeated the tasks while medication was giving its peak benefit. The medication returned automatic covert orienting toward normal but did not improve volitional covert orienting. Several PD patients completed the tasks a third time after receiving surgery (specifically, implantation of stimulating electrodes in a subcortical brain region to alleviate motor symptoms). The stimulation (without medication) returned automatic orienting toward normal, did not change predictability, and further impaired volitional orienting. Taken together, treatments prescribed to alleviate the motor symptoms (a patient's primary concern) only improve some cognitive functions. Future studies may establish criteria to predict which patients are more likely to have cognitive benefit from medication over surgery, or vice versa. ^ I have also hypothesized an anatomical model relating orienting circuitry to abnormal PD circuitry and the therapeutic targets. My results suggest medication is more effective restoring the orienting circuitry than stimulation. Further, automatic and volitional orienting abilities seem to be modulated independently, which differs from an earlier model proposing a dependent, inverse relationship. My results are further discussed in terms of response inhibition, response selection, and the location of the selection. ^
Resumo:
Glial-cell-line-derived neurotrophic factor (GDNF) is a potent neurotrophic factor for adult nigral dopamine neurons in vivo. GDNF has both protective and restorative effects on the nigro-striatal dopaminergic (DA) system in animal models of Parkinson disease. Appropriate administration of this factor is essential for the success of its clinical application. Since it cannot cross the blood–brain barrier, a gene transfer method may be appropriate for delivery of the trophic factor to DA cells. We have constructed a recombinant adenovirus (Ad) encoding GDNF and injected it into rat striatum to make use of its ability to infect neurons and to be retrogradely transported by DA neurons. Ad-GDNF was found to drive production of large amounts of GDNF, as quantified by ELISA. The GDNF produced after gene transfer was biologically active: it increased the survival and differentiation of DA neurons in vitro. To test the efficacy of the Ad-mediated GDNF gene transfer in vivo, we used a progressive lesion model of Parkinson disease. Rats received injections unilaterally into their striatum first of Ad and then 6 days later of 6-hydroxydopamine. We found that mesencephalic nigral dopamine neurons of animals treated with the Ad-GDNF were protected, whereas those of animals treated with the Ad-β-galactosidase were not. This protection was associated with a difference in motor function: amphetamine-induced turning was much lower in animals that received the Ad-GDNF than in the animals that received Ad-β-galactosidase. This finding may have implications for the development of a treatment for Parkinson disease based on the use of neurotrophic factors.
Resumo:
Two factors that contribute to the progression of Parkinson disease are a brain defect in mitochondrial respiration and the generation of hydrogen peroxide (H2O2) by monoamine oxidase (MAO). Here we show that the two are linked. Metabolism of the neurotransmitter dopamine, or other monoamines (benzylamine, tyramine), by intact rat brain mitochondria suppresses pyruvate- and succinate-dependent electron transport. MAO inhibitors prevent this action. Mitochondrial damage is also reversed during electron flow. A probable explanation is that MAO-generated H2O2 oxidizes glutathione to glutathione disulfide (GSSG), which undergoes thiol-disulfide interchange to form protein mixed disulfides, thereby interfering reversibly with thiol-dependent enzymatic function. In agreement with this premise, direct addition of GSSG to mitochondria resulted in similar reversible inhibition of electron transport. In addition, the monoamines induced an elevation in protein mixed disulfides within mitochondria. These observations imply that (i) heightened activity and metabolism of neurotransmitter by monoamine neurons may affect neuronal function, and (ii) apparent defects in mitochondrial respiration associated with Parkinson disease may reflect, in part, an established increase in dopamine turnover. The experimental results also target mitochondrial repair mechanisms for further investigation and may, in time, lead to newer forms of therapy.
Resumo:
There is growing evidence that oxidative stress and mitochondrial respiratory failure with attendant decrease in energy output are implicated in nigral neuronal death in Parkinson disease (PD). It is not known, however, which cellular elements (neurons or glial cells) are major targets of oxygen-mediated damage. 4-Hydroxy-2-nonenal (HNE) was shown earlier to react with proteins to form stable adducts that can be used as markers of oxidative stress-induced cellular damage. We report here results of immunochemical studies using polyclonal antibodies directed against HNE-protein conjugates to label the site of oxidative damage in control subjects (ages 18-99 years) and seven patients that died of PD (ages 57-78 years). All the nigral melanized neurons in one of the midbrain sections were counted and classified into three groups according to the intensity of immunostaining for HNE-modified proteins--i.e., no staining, weak staining, and intensely positive staining. On average, 58% of nigral neurons were positively stained for HNE-modified proteins in PD; in contrast only 9% of nigral neurons were positive in the control subjects; the difference was statistically significant (Mann-Whitney U test; P < 0.01). In contrast to the substantia nigra, the oculomotor neurons in the same midbrain sections showed no or only weak staining for HNE-modified proteins in both PD and control subjects; young control subjects did not show any immunostaining; however, aged control subjects showed weak staining in the oculomotor nucleus, suggesting age-related accumulation of HNE-modified proteins in the neuron. Our results indicate the presence of oxidative stress within nigral neurons in PD, and this oxidative stress may contribute to nigral cell death.
Resumo:
The degeneration of nigral dopaminergic neurons in Parkinson disease is believed to be associated with oxidative stress. Since iron levels are increased in the substantia nigra of parkinsonian patients and this metal catalyzes the formation of free radicals, it may be involved in the mechanisms of nerve cell death. The cause of nigral iron increase is not understood. Iron acquisition by neurons may occur from iron-transferrin complexes with a direct interaction with specific membrane receptors, but recent results have shown a low density of transferrin receptors in the substantia nigra. To investigate whether neuronal death in Parkinson disease may be associated with changes in a pathway supplementary to that of transferrin, lactoferrin (lactotransferrin) receptor expression was studied in the mesencephalon. In this report we present evidence from immunohistochemical staining of postmortem human brain tissue that lactoferrin receptors are localized on neurons (perikarya, dendrites, axons), cerebral microvasculature, and, in some cases, glial cells. In parkinsonian patients, lactoferrin receptor immunoreactivity on neurons and microvessels was increased and more pronounced in those regions of the mesencephalon where the loss of dopaminergic neurons is severe. Moreover, in the substantia nigra, the intensity of immunoreactivity on neurons and microvessels was higher for patients with higher nigral dopaminergic loss. These data suggest that lactoferrin receptors on vulnerable neurons may increase intraneuronal iron levels and contribute to the degeneration of nigral dopaminergic neurons in Parkinson disease.
Resumo:
We recently reported that a linkage disequilibrium (LD) block on chromosome 10q encompassing the gene encoding insulin-degrading enzyme (IDE) harbors sequence variants that associate with Alzheimer disease (AD). Evidence also indicated effects upon a number of quantitative indices of AD severity, including age-at-onset (AAO). Since linkage of this immediate region to AAO has been shown in both AD and Parkinson disease (PD), we have explored the possibility that polymorphism within this LD block might also influence PD. Utilizing single nucleotide polymorphisms that delineate common haplotypes from this region, we observed significant evidence of association with AAO in an Australian PD case-control sample. Analyses were complemented with AAO data from two independent Swedish AD case samples, for which previously reported findings were replicated. Results were consistent between AD and PD, suggesting the presence of equivalent detrimental and protective alleles. These data highlight a genomic region in the proximity of IDE that may contribute to AD and PD in a similar manner.