971 resultados para ISOTHERMAL CRYSTALLIZATION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall isothermal crystallization kinetics for neat polypropylene and grafted polypropylene systems were investigated. The rate constants were corrected assuming the heterogeneous nucleation and three dimensional growth of polypropylene spherulites. A semiempirical equation for the radial growth rate of polypropylene spherulites was developed as a function of temperature, and was used to determine the number of effective nuclei of different temperatures. The number of nuclei in grafted samples was estimated to be 10(2)-10(3) times larger than that of neat polypropylene. (C) 1997 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Melt mixing of nylon 8 with neodymium oxide particles was carried out with a single-screw extruder. The crystal behaviors of plain nylon 6 and the neodymium oxide filled nylon 6 mixture were studied by means of isothermal crystallization kinetic analysis. Isothermal crystallization thermograms obtained by differential scanning calorimetry (DSC) were analyzed based on the Avrami equation. The neodymium oxide particles acted as a nucleating agent in the mixture. The overall rate of di-isothermal crystallization of the neodymium oxide filled nylon 6 mixture is higher than that of plain nylon 6. The mechanism and modes of plain nylon 6 were the same as those of neodymium oxide filled PA6 mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isothermal crystallization and melting behavior of the poly(epsilon-caprolactone) (PCL)/poly(ethylene oxide)(PEO) diblock copolymer has been studied by WAXD, SAXS, and DSC methods. Only the PCL block is crystallizable; the PEO block of weight fraction 20% cannot crystallize, although its corresponding homopolymer has strong crystallizability. The long period, amorphous layer, and crystalline lamella of the PCL/PEO block copolymer all increase with the rise in the crystallization temperature, and the thickness of the amorphous layer is much larger than that of crystalline lamella due to the existence of the PEO block in the amorphous region. The isothermal crystallization of the PCL/PEO block copolymer is investigated by using the theory of Turnbull and Fischer. It is found that the amorphous PEO block has a great influence on the nucleation of PCL block crystallization, and the extent of this influence depends on crystallization conditions, especially temperature. The outstanding characteristics are the phenomenon of the double melting peaks in the melting process of the PCL/PEO block copolymer after isothermal crystallization at different temperatures and the transformation of melting peaks from double peaks to a single peak with variations in the crystallization condition. They are related mainly to the existence of the PEO block bonding chemically with the PCL block. In summing up results of investigations into the crystallization and melting behavior of the PCL/PEO block copolymer, it is interesting to notice that when the PCL/PEO block copolymer crystallizes at three different crystallization temperatures, i.e., below 0 degrees C, between 0 and 35 degrees C, and above 35 degrees C, the variation of peak melting temperature is similar to that of overall crystallization rates in the process of isothermal crystallization. The results can be elucidated by the effect of the PEO block on the crystallization of the PCL block, especially its nucleation. (C) 1996 John Wiley & Sons, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple numerical model which calculates the kinetics of crystallization involving randomly distributed nucleation and isotropic growth is presented. The model can be applied to different thermal histories and no restrictions are imposed on the time and the temperature dependences of the nucleation and growth rates. We also develop an algorithm which evaluates the corresponding emerging grain-size distribution. The algorithm is easy to implement and particularly flexible, making it possible to simulate several experimental conditions. Its simplicity and minimal computer requirements allow high accuracy for two- and three-dimensional growth simulations. The algorithm is applied to explore the grain morphology development during isothermal treatments for several nucleation regimes. In particular, thermal nucleation, preexisting nuclei, and the combination of both nucleation mechanisms are analyzed. For the first two cases, the universal grain-size distribution is obtained. The high accuracy of the model is stated from its comparison to analytical predictions. Finally, the validity of the Kolmogorov-Johnson-Mehl-Avrami model SSSR, is verified for all the cases studied

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposites of high-density polyethylene (HDPE) and carbon nanotubes (CNT) of different geometries (single wall, double wall, and multiwall; SWNT, DWNT, and MWNT) were prepared by in situ polymerization of ethylene on CNT whose surface had been previously treated with a metallocene catalytic system. In this work, we have studied the effects of applying the successive self-nucleation and annealing thermal fractionation technique (SSA) to the nanocomposites and have also determined the influence of composition and type of CNT on the isothermal crystallization behavior of the HDPE. SSA results indicate that all types of CNT induce the formation of a population of thicker lamellar crystals that melt at higher temperatures as compared to the crystals formed in neat HDPE prepared under the same catalytic and polymerization conditions and subjected to the same SSA treatment. Furthermore, the peculiar morphology induced by the CNT on the HDPE matrix allows the resolution of thermal fractionation to be much better. The isothermal crystallization results indicated that the strong nucleation effect caused by CNT reduced the supercooling needed for crystallization. The interaction between the HDPE chains and the surface of the CNT is probably very strong as judged by the results obtained, even though it is only physical in nature. When the total crystallinity achieved during isothermal crystallization is considered as a function of CNT content, it was found that a competition between nucleation and topological confinement could account for the results. At low CNT content the crystallinity increases (because of the nucleating effect of CNT on HDPE), however, at higher CNT content there is a dramatic reduction in crystallinity reflecting the increased confinement experienced by the HDPE chains at the interfaces which are extremely large in these nanocomposites. Another consequence of these strong interactions is the remarkable decrease in Avrami index as CNT content increases. When the Avrami index reduces to I or lower, nucleation dominates the overall kinetics as a consequence of confinement effects. Wide-angle X-ray experiments were performed at a high-energy synchrotron source and demonstrated that no change in the orthorhombic unit cell of HDPE occurred during crystallization with or without CNT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The melt crystallization of poly(vinyl alcohol) (PVA) and PVA composites has been a controversial subject due to inconclusive evidence and different opinions for its decomposition during crystallization. Using graphene as a model, the melt crystallization of PVA and PVA-graphene composites occurring during single-cycle and multiple-cycle non-isothermal annealing processes was systematically analyzed using different characterization techniques. The results obtained using single-cycle non-isothermal annealing indicated that the entire crystallization process took place through two main stages. The graphene in the PVA matrix regulates the nucleation and crystal growth manner of the PVA, yet resulting in retardation of the entire crystallization. The FTIR and Raman spectroscopic results particularly demonstrated that the annealing process not only improved the crystallinity but also led to clear decomposition in PVA and PVA-graphene composites, such as the elimination of hydroxyl groups and the production of C=C double bonds. The newly produced C=C double bonds were found to be responsible for the retardation of PVA macromolecule crystallization and the breaking of hydrogen bonds among the hydroxyl groups in the PVA chains. In addition, the morphological observation and multi-cycle non-isothermal crystallization further confirmed the existence of decomposition based on the surface damage as well as decreased crystallization enthalpy and crystallization peak temperature. Therefore, the non-isothermal crystallizations of the pure PVA and the PVA-graphene composites were in fact the combination of non-isothermal crystallization and non-isothermal degradation processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isothermal and nonisothermal crystallization kinetics of nylon-46 were investigated with differential scanning calorimetry. The equilibrium melting enthalpy and the equilibrium melting temperature of nylon-46 were determined to be 155.58 J/g and 307.10 degreesC, respectively. The isothermal crystallization process was described by the Avrami equation. The lateral surface free energy and the end surface free energy of nylon-46 were calculated to be 8.28 and 138.54 erg/cm(2), respectively. The work of chain folding was determined to be 7.12 kcal/mol. The activation energies were determined to be 568.25 and 337.80 kJ/mol for isothermal and nonisothermal crystallization, respectively. A convenient method was applied to describe the nonisothermal crystallization kinetics of nylon-46 by a combination of the Avrami and Ozawa equations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The isothermal melt and cold crystallization kinetics of poly(aryl ether ketone ether ketone ketone) are investigated by differential scanning calorimetry over two temperature regions. The Avrami equation describes the primary stage of isothermal crystallization kinetics with the exponent n approximate to 2 for both melt and cold crystallization. With the Hoffman-Weeks method, the equilibrium melting point is estimated to be 406 degrees C. From the spherulitic growth equation proposed by Hoffman and Lauritzen, the nucleation parameter (K-g) of the isothermal melt and cold crystallization is estimated. In addition, the K-g value of the isothermal melt crystallization is compared to those of the other poly(aryl ether ketone)s. (C) 2000 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isothermal and nonisothermal crystallization behavior for PEKK(T) was studied using differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and electron diffraction (ED). In the isothermal crystallization process, the Avrami parameters obtained were n = 2.33-2.69, which shows crystal growth of two-dimensional extensions consistent with our observations by TEM. The lamellar thickness increases with the crystallization temperature of PEKK(T) crystallized isothermally from the melt. However, for the nonisothermal crystallization of PEKK(T), the results from the modified Avrami analysis show two different crystallization processes. Avrami exponents n(1) = 3.61-5.30, obtained from the primary crystallization process, are much bigger than are the secondary n(2) = 2.26-3.04 and confirmed by the observation of the spherulite morphology. PEKK(T) crystallized isothermally from the melt possesses the same crystal structure (Form I) as that from nonisothermal melt crystallization. The results from TEM observation show that the spherulite radius decreases with an increasing cooling rate. (C) 2001 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Analysis of the isothermal, and nonisothermal crystallization kinetics of Nylon-11 is carried out using differential scanning calorimetry. The Avrami equation and that modified by Jeziorny can describe the primary stage of isothermal and nonisothermal crystallization of Nylon-11. In the isothermal crystallization process, the mechanism of spherulitic nucleation and growth are discussed; the lateral and folding surface free energies determined from the Lauritzen-Hoffman equation are sigma = 10.68 erg/cm(2) and sigma(e) = 110.62 erg/cm(2); and the work of chain folding q = 7.61 Kcal/mol. In the nonisothermal crystallization process, Ozawa analysis failed to describe the crystallization behavior of Nylon-ii. Combining the Avrami and Ozawa equations, we obtain a new and convenient method to analyze the nonisothermal crystallization kinetics of Nylon-11; in the meantime, the activation energies are determined to be -394.56 and 328.37 KJ/mol in isothermal and nonisothermal crystallization process from the Arrhonius form and the Kissinger method. (C) 1998 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Decomposition of poly(vinyl alcohol)/montmorillonite clay (PVA/MMT) composites during melting-crystallization was experimentally confirmed by morphology and molecular structure changes. In particular, FTIR spectra show the shift of O-H stretching band as well as enhanced intensities of C-O stretching and CH2 rocking vibrational modes. Furthermore, Raman deconvolution indicates that C-H wagging, CH2-CH wagging, CH-CO bending and CH2 wagging modes in amorphous domains were all decreased greatly. Moreover, this decomposition leads to decreased melting enthalpy, melting point, crystallization enthalpy and crystallization temperature. Crystallization analysis shows that the MMT incorporated slows down the crystallization process in the PVA matrix regardless of the nucleation capability of MMT. Despite the severe decomposition, the crystallization kinetics still corroborated well with common classical models. As a result, molecular structure changes and crystallization retardation observed in this study clearly indicate the strong effects of the thermal degradation on the non-isothermal crystallization of PVA/MMT composites.