875 resultados para IONIZED-GAS
Resumo:
The solar wind is an extended ionized gas of very high electrical conductivity, and therefore drags some magnetic flux out of the Sun to fill the heliosphere with a weak interplanetary magnetic field(1,2). Magnetic reconnection-the merging of oppositely directed magnetic fields-between the interplanetary field and the Earth's magnetic field allows energy from the solar wind to enter the near-Earth environment. The Sun's properties, such as its luminosity, are related to its magnetic field, although the connections are still not well understood(3,4). Moreover, changes in the heliospheric magnetic field have been linked with changes in total cloud cover over the Earth, which may influence global climate(5), Here we show that measurements of the near-Earth interplanetary magnetic field reveal that the total magnetic flux leaving the Sun has risen by a factor of 1.4 since 1964: surrogate measurements of the interplanetary magnetic field indicate that the increase since 1901 has been by a factor of 2,3, This increase may be related to chaotic changes in the dynamo that generates the solar magnetic field. We do not yet know quantitatively how such changes will influence the global environment.
Resumo:
NGC 6908, an S0 galaxy situated in the direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21-cm radio synthesis observations obtained with the Giant Metrewave Radio Telescope (GMRT) and optical images and spectroscopy obtained with the Gemini-North telescope of this pair of interacting galaxies. From the radio observations, we obtained the velocity field and the H I column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high-quality photometric images and 5 angstrom resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s(-1). The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some emission lines are superimposed on a broader absorption profile, which suggests that they were not formed in NGC 6908. Finally, the H I profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disc and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4 +/- 0.6) x 10(7) yr ago.
Resumo:
Molecular hydrogen emission is commonly observed in planetary nebulae. Images taken in infrared H(2) emission lines show that at least part of the molecular emission is produced inside the ionized region. In the best studied case, the Helix nebula, the H(2) emission is produced inside cometary knots (CKs), comet-shaped structures believed to be clumps of dense neutral gas embedded within the ionized gas. Most of the H(2) emission of the CKs seems to be produced in a thin layer between the ionized diffuse gas and the neutral material of the knot, in a mini-photodissociation region (mini-PDR). However, PDR models published so far cannot fully explain all the characteristics of the H(2) emission of the CKs. In this work, we use the photoionization code AANGABA to study the H(2) emission of the CKs, particularly that produced in the interface H(+)/H(0) of the knot, where a significant fraction of the H(2) 1-0 S(1) emission seems to be produced. Our results show that the production of molecular hydrogen in such a region may explain several characteristics of the observed emission, particularly the high excitation temperature of the H(2) infrared lines. We find that the temperature derived from H(2) observations, even of a single knot, will depend very strongly on the observed transitions, with much higher temperatures derived from excited levels. We also proposed that the separation between the H alpha and [N II] peak emission observed in the images of CKs may be an effect of the distance of the knot from the star, since for knots farther from the central star the [N II] line is produced closer to the border of the CK than H alpha.
Resumo:
We report the first simultaneous zJHK spectroscopy on the archetypical Seyfert 2 galaxy NGC 1068 covering the wavelength region 0.9-2.4 mu m. The slit, aligned in the north-south direction and centred in the optical nucleus, maps a region 300 pc in radius at subarcsec resolution, with a spectral resolving power of 360 km s-1. This configuration allows us to study the physical properties of the nuclear gas including that of the north side of the ionization cone, map the strong excess of continuum emission in the K band and attributed to dust and study the variations, both in flux and profile, in the emission lines. Our results show the following. (1) Mid- to low-ionization emission lines are split into two components, whose relative strengths vary with the position along the slit and seem to be correlated with the jet. (2) The coronal lines are single-peaked and are detected only in the central few hundred of pc from the nucleus. (3) The absorption lines indicate the presence of intermediate age stellar population, which might be a significant contributor to the continuum in the near-IR spectra. (4) Through some simple photoionization models we find photoionization as the main mechanism powering the emitting gas. (5) Calculations using stellar features point to a mass concentration inside the 100-200 pc of about 1010 M(circle dot).
Resumo:
We here explore the effects of the SN explosions into the halo of star-forming galaxies like the Milky Way. Successive randomly distributed and clustered SNe explosions cause the formation of hot superbubbles that drive either fountains or galactic winds above the galactic disk, depending on the amount and concentration of energy that is injected by the SNe. In a galactic fountain, the ejected gas is re-captured by the gravitational potential and falls back onto the disk. From 3D non-equilibrium radiative cooling hydrodynamical simulations of these fountains, we find that they may reach altitudes up to about 5 kpc in the halo and thus allow for the formation of the so called intermediate-velocity-clouds (IVCs) which are often observed in the halos of disk galaxies. The high-velocity-clouds that are also observed but at higher altitudes (of up to 12 kpc) require another mechanism to explain their production. We argue that they could be formed either by the capture of gas from the intergalactic medium and/or by the action of magnetic fields that are carried to the halo with the gas in the fountains. Due to angular momentum losses to the halo, we find that the fountain material falls back to smaller radii and is not largely spread over the galactic disk. Instead, the SNe ejecta fall nearby the region where the fountain was produced, a result which is consistent with recent chemical models of the galaxy. The fall back material leads to the formation of new generations of molecular clouds and to supersonic turbulence feedback in the disk. (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
We report on the ion acceleration mechanisms that occur during the interaction of an intense and ultrashort laser pulse ( λ > μ I 2 1018 W cm−2 m2) with an underdense helium plasma produced from an ionized gas jet target. In this unexplored regime, where the laser pulse duration is comparable to the inverse of the electron plasma frequency ωpe, reproducible non-thermal ion bunches have been measured in the radial direction. The two He ion charge states present energy distributions with cutoff energies between 150 and 200 keV, and a striking energy gap around 50 keV appearing consistently for all the shots in a given density range. Fully electromagnetic particle-in-cell simulations explain the experimental behaviors. The acceleration results from a combination of target normal sheath acceleration and Coulomb explosion of a filament formed around the laser pulse propagation axis
Resumo:
We present PIPE3D, an analysis pipeline based on the FIT3D fitting tool, developed to explore the properties of the stellar populations and ionized gas of integral field spectroscopy (IFS) data. PIPE3D was created to provide coherent, simple to distribute, and comparable dataproducts, independently of the origin of the data, focused on the data of the most recent IFU surveys (e.g., CALIFA, MaNGA, and SAMI), and the last generation IFS instruments (e.g., MUSE). In this article we describe the different steps involved in the analysis of the data, illustrating them by showing the dataproducts derived for NGC 2916, observed by CALIFA and P-MaNGA. As a practical example of the pipeline we present the complete set of dataproducts derived for the 200 datacubes that comprises the V500 setup of the CALIFA Data Release 2 (DR2), making them freely available through the network. Finally, we explore the hypothesis that the properties of the stellar populations and ionized gas of galaxies at the effective radius are representative of the overall average ones, finding that this is indeed the case.
Resumo:
We present an improved version of FIT3D, a fitting tool for the analysis of the spectroscopic properties of the stellar populations and the ionized gas derived from moderate resolution spectra of galaxies. This tool was developed to analyze integral field spectroscopy data and it is the basis of PIPE3D, a pipeline used in the analysis of CALIFA, MaNGA, and SAMI data. We describe the philosophy and each step of the fitting procedure. We present an extensive set of simulations in order to estimate the precision and accuracy of the derived parameters for the stellar populations and the ionized gas. We report on the results of those simulations. Finally, we compare the results of the analysis using FIT3D with those provided by other widely used packages, and we find that the parameters derived by FIT3D are fully compatible with those derived using these other tools.
Resumo:
During our Herschel Lensing Survey (HLS) of massive galaxy clusters, we have discovered an exceptionally bright source behind the z = 0.22 cluster Abell 773, which appears to be a strongly lensed submillimeter galaxy (SMG) at z = 5.2429. This source is unusual compared to most other lensed sources discovered by Herschel so far, because of its higher submm flux (∼200 mJy at 500 μm) and its high redshift. The dominant lens is a foreground z = 0.63 galaxy, not the cluster itself. The source has a far-infrared (FIR) luminosity of L_FIR = 1.1 × 10^14/μ L_⨀, where μ is the magnification factor, likely ∼11. We report here the redshift identification through CO lines with the IRAM-30 m, and the analysis of the gas excitation, based on CO(7–6), CO(6–5), CO(5–4) detected at IRAM and the CO(2–1) at the EVLA. All lines decompose into a wide and strong red component, and a narrower and weaker blue component, 540 km s^−1 apart. Assuming the ultraluminous galaxy (ULIRG) CO-to-H_2 conversion ratio, the H_2 mass is 5.8×10^11/μ M_⨀, of which one third is in a cool component. From the CI(^3P_2−^3 P_1) line we derive a C_I/H_2 number abundance of 6 × 10^−5 similar to that in other ULIRGs. The H_2O_p(2, 0, 2−1, 1, 1) line is strong only in the red velocity component, with an intensity ratio I(H_2O)/I(CO) ∼ 0.5, suggesting a strong local FIR radiation field, possibly from an active nucleus (AGN) component. We detect the [NII]205 μm line for the first time at high-z. It shows comparable blue and red components, with a strikingly broad blue one, suggesting strong ionized gas flows.
Resumo:
In the past, many papers have been presented which show that the coating of cutting tools often yields decreased wear rates and reduced coefficients of friction. Although different theories are proposed, covering areas such as hardness theory, diffusion barrier theory, thermal barrier theory, and reduced friction theory, most have not dealt with the question of how and why the coating of tool substrates with hard materials such as Titanium Nitride (TiN), Titanium Carbide (TiC) and Aluminium Oxide (Al203) transforms the performance and life of cutting tools. This project discusses the complex interrelationship that encompasses the thermal barrier function and the relatively low sliding friction coefficient of TiN on an undulating tool surface, and presents the result of an investigation into the cutting characteristics and performance of EDMed surface-modified carbide cutting tool inserts. The tool inserts were coated with TiN by the physical vapour deposition (PVD) method. PVD coating is also known as Ion-plating which is the general term of the coating method in which the film is created by attracting ionized metal vapour in this the metal was Titanium and ionized gas onto negatively biased substrate surface. Coating by PVD was chosen because it is done at a temperature of not more than 5000C whereas chemical Vapour Deposition CVD process is done at very high temperature of about 8500C and in two stages of heating up the substrates. The high temperatures involved in CVD affects the strength of the (tool) substrates. In this study, comparative cutting tests using TiN-coated control specimens with no EDM surface structures and TiN-coated EDMed tools with a crater-like surface topography were carried out on mild steel grade EN-3. Various cutting speeds were investigated, up to an increase of 40% of the tool manufacturer’s recommended speed. Fifteen minutes of cutting were carried out for each insert at the speeds investigated. Conventional tool inserts normally have a tool life of approximately 15 minutes of cutting. After every five cuts (passes) microscopic pictures of the tool wear profiles were taken, in order to monitor the progressive wear on the rake face and on the flank of the insert. The power load was monitored for each cut taken using an on-board meter on the CNC machine to establish the amount of power needed for each stage of operation. The spindle drive for the machine is an 11 KW/hr motor. Results obtained confirmed the advantages of cutting at all speeds investigated using EDMed coated inserts, in terms of reduced tool wear and low power loads. Moreover, the surface finish on the workpiece was consistently better for the EDMed inserts. The thesis discusses the relevance of the finite element method in the analysis of metal cutting processes, so that metal machinists can design, manufacture and deliver goods (tools) to the market quickly and on time without going through the hassle of trial and error approach for new products. Improvements in manufacturing technologies require better knowledge of modelling metal cutting processes. Technically the use of computational models has a great value in reducing or even eliminating the number of experiments traditionally used for tool design, process selection, machinability evaluation, and chip breakage investigations. In this work, much interest in theoretical and experimental investigations of metal machining were given special attention. Finite element analysis (FEA) was given priority in this study to predict tool wear and coating deformations during machining. Particular attention was devoted to the complicated mechanisms usually associated with metal cutting, such as interfacial friction; heat generated due to friction and severe strain in the cutting region, and high strain rates. It is therefore concluded that Roughened contact surface comprising of peaks and valleys coated with hard materials (TiN) provide wear-resisting properties as the coatings get entrapped in the valleys and help reduce friction at chip-tool interface. The contributions to knowledge: a. Relates to a wear-resisting surface structure for application in contact surfaces and structures in metal cutting and forming tools with ability to give wear-resisting surface profile. b. Provide technique for designing tool with roughened surface comprising of peaks and valleys covered in conformal coating with a material such as TiN, TiC etc which is wear-resisting structure with surface roughness profile compose of valleys which entrap residual coating material during wear thereby enabling the entrapped coating material to give improved wear resistance. c. Provide knowledge for increased tool life through wear resistance, hardness and chemical stability at high temperatures because of reduced friction at the tool-chip and work-tool interfaces due to tool coating, which leads to reduced heat generation at the cutting zones. d. Establishes that Undulating surface topographies on cutting tips tend to hold coating materials longer in the valleys, thus giving enhanced protection to the tool and the tool can cut faster by 40% and last 60% longer than conventional tools on the markets today.
Resumo:
La galaxie spirale barrée NGC 5430 est particulière en ce sens qu’elle présente un noeud Wolf-Rayet très lumineux et des bras asymétriques. Des spectres longue-fente le long de la barre et dans le bras déformé ainsi que des données SpIOMM couvrant l’ensemble de la galaxie ont été analysées. L’absorption stellaire sous-jacente a été soustraite des spectres longue-fente à l’aide d’un ajustement de modèles théoriques de populations stellaires fait avec le programme GANDALF. L’absorption a un impact très important sur le calcul de l’extinction ainsi que sur les différents diagnostics propres aux régions HII et aux populations stellaires jeunes. Enfin, cette étude montre que NGC 5430 comporte une composante gazeuse ionisée diffuse sur toute son étendue et qu’il est important d’en tenir compte afin d’appliquer correctement les diagnostics. Un des scénarios évolutifs proposés au terme de cette étude est que le noeud Wolf-Rayet constitue le restant d’une petite galaxie ou d’un nuage intergalactique qui serait entré en collision avec NGC 5430. Une structure englobant le noeud Wolf-Rayet se déplace à une vitesse considérablement inférieure (50 - 70 km s-1) à celle attendue à une telle distance du centre de la galaxie (200 - 220 km s-1). De plus, le noeud Wolf-Rayet semble très massif puisque l’intensité maximale du continu stellaire de cette région est semblable à celle du noyau et est de loin supérieure à celle de l’autre côté de la barre. Le nombre d’étoiles Wolf-Rayet (2150) est aussi considérable. Il n’est toutefois pas exclu que la différence de vitesses observée témoigne d’un écoulement de gaz le long de la barre, qui alimenterait la formation stellaire du noeud Wolf-Rayet ou du noyau.
Resumo:
L’arrivée du spectromètre imageur à transformée de Fourier SITELLE au télescope Canada-France-Hawaï souligne la nécessité d’un calculateur de temps d’exposition permettant aux utilisateurs de l’instrument de planifier leurs observations et leurs demandes de temps de télescope. Une grande partie de mon projet est ainsi le développement d’un code de simulation capable de reproduire les résultats de SITELLE et de son prédecesseur SpIOMM, installé à l’Observatoire du Mont-Mégantic. La précision des simulations est confirmée par une comparaison avec des données SpIOMM et les premières observations de SITELLE. La seconde partie de mon projet consiste en une analyse spectrale de données observationelles. Prenant avantage du grand champ de vue de SpIOMM, les caractéristiques du gaz ionisé (vitesse radiale et intensité) sont étudiées pour l’ensemble de la paire de galaxies en interaction Arp 72. La courbe de rotation dans le visible ainsi que le gradient de métallicité de NGC 5996, la galaxie principale d’Arp 72, sont obtenues ici pour la première fois. La galaxie spirale NGC 7320 est également étudiée à partir d’observations faites à la fois avec SpIOMM et SITELLE.
Resumo:
Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfv´en ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization ( 10−7) that they constitute plasmas. We outline the criteria required for Alfv´en ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfv´en ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10−6–1 can be obtained as a result of Alfv´en ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H2, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfv´en ionization may also be applicable to other astrophysical environments such as protoplanetary disks.
Resumo:
We present a detailed study of the neutral and ionized gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar Na I D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (∼10^7 M_⊙) is detected in a central region of ∼1.75 kpc size. This neutral gas is blueshifted by ∼165 km s^−1 with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Hα, [N II], [S II]) are also analysed looking for the ionized warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the Na I D absorption is detected. It presents higher [N II]/Hα and [S II]/Hα line ratios than the narrow component at the same locations, indicative of contamination by shock ionization. This secondary component also presents blueshifted velocities, although smaller than those measured for the neutral gas, averaging to ∼−30 km s^−1. The mass and mass outflow rate of the wind is dominated by the neutral gas, of which a small fraction might be able to escape the gravitational potential of the host galaxy. The observations in this system can be readily understood within a bipolar gas flow scenario.
Resumo:
Context. The analysis and interpretation of the H(2) line emission from planetary nebulae have been done in the literature by assuming that the molecule survives only in regions where the hydrogen is neutral, as in photodissociation, neutral clumps, or shocked regions. However, there is strong observational and theoretical evidence that at least part of the H(2) emission is produced inside the ionized region of these objects. Aims. The aim of the present work is to calculate and analyze the infrared line emission of H(2) produced inside the ionized region of planetary nebulae using a one-dimensional photoionization code. Methods. The photoionization code Aangaba was improved in order to calculate the statistical population of the H(2) energy levels, as well as the intensity of the H(2) infrared emission lines in the physical conditions typical of planetary nebulae. A grid of models was obtained and the results then analyzed and compared with the observational data. Results. We show that the contribution of the ionized region to the H(2) line emission can be important, particularly in the case of nebulae with high-temperature central stars. This result explains why H(2) emission is more frequently observed in bipolar planetary nebulae (Gatley's rule), since this kind of object typically has hotter stars. Collisional excitation plays an important role in populating the rovibrational levels of the electronic ground state of H(2) molecules. Radiative mechanisms are also important, particularly for the upper vibrational levels. Formation pumping can have minor effects on the line intensities produced by de-excitation from very high rotational levels, especially in dense and dusty environments. We included the effect of the H(2) molecule on the thermal equilibrium of the gas, concluding that, in the ionized region, H(2) only contributes to the thermal equilibrium in the case of a very high temperature of the central star or a high dust-to-gas ratio, mainly through collisional de-excitation.