943 resultados para ION CHEMISTRY
Resumo:
本篇论文应用串联质谱技术(MS/MS)对双电荷离子[C_(12)H_(12)N_2O]~(2+)和[C_(12)H_(12)N_2S]~(2+)气相中亚稳分解反应和碰撞诱导反应进行了较为系统的研究。根据由质量分析离子动能谱(MIKES)得到的[C_(12)H_(12)N_2O]~(2+)和[C_(12)H_(12)N_2S]~(2+)电荷分离过程中动能释放值及两电荷间距值,再结合串联质谱中观察到的亚稳分解反应,推测出离子[C_(12)H_(12)N_2O]~(2+)过渡态的结构是近似直线形的,而[C_(12)H_(12)N_2S]~(2+)离子亚稳分解反应的过渡态结构是近似三角形的。对以上两种离子碰撞诱导解离(CID)反应的研究表明,碰撞能量和碰撞室内压力对反应过程及离子强度有较大的影响。
Resumo:
The dissociative recombination of protonated propionitrile, CH3CH2CNH+, has been investigated at the heavy ion storage ring, CRYRING, at the Manne Siegbahn Laboratory, Stockholm University, Sweden. The thermal rate coefficient has been deduced to follow k(T) = (1.5 +/- 0.2) x 10(-6) (T/300)(-0.76) (+/-) (0.02) cm(3) s(-1) for electron temperatures ranging from similar to 10 to similar to 1000 K. Measurements of the branching fractions were performed at similar to 0 eV relative kinetic energy. It has been found that in 43% +/- 2% of the reactions the four heavy atoms remain in the same product fragment. An equal portion of the reactions leads to products where one of the heavy atoms is split off from the other three and 14% +/- 1% result in a breakup into two heavy fragments containing two heavy atoms each. We discuss the significance of the data to Titan's upper atmosphere.
Resumo:
The Badain Jaran Desert lies on the Alashan Plateau in western Inner Mongolia. Because of huge dunes, permanent lakes and on the northern fringe of the Asian summer monsoon, the Badain Jaran Desert has been drawing attentions of many experts. And they have made great progress in dune’s geomorphology, botany in desert, paleoclimate change and other study areas. We analyzed environmental isotope and ion chemistry in lakes and groundwater of the desert and southeastern area, and collected some other evidences from 14C dating, fossils and archeology. According to chemical analysis, we discuss the difference spatial character of ion chemistry and environmental isotope in lakes and groundwater of the desert and adjacent. Contrasting with ion chemistry and isotope results in other arid area, we argue origin of groundwater and lakes in the desert area, and get a preliminary understanding of desert lakes’ evolution during Holocene. Some main conclusions were drawn as follows: 1. It has a obvious difference in hydrophysical parameters between lakes and groundwater in the desert and margin. 2. The results of ion analysis show that Na+ and Cl- are dominant in most lakes of the desert. Meanwhile, Na+ 、Cl- and HCO3- are dominant in groundwater of the desert and adjacent, and alsoMg2+、Ca2+、and NO3- have more percentage than in lakes. 3. Owing to different solubilities, the conten of main ions in water varies with the content of TDS. Whereas the content of TDS is over 100 g/L, the content of SO42-、HCO3-、Mg2+and Ca2+ in lakes descend. 4. The result of isotope analyzing indicate the lakes and groundwater in southeast desert have a similar vaporing trend with the groundwater in the southeast margin of the desert. It imply there would have some kind of contact between groundwater in margin and lakes of southeast desert. 5. Contrasting with isotope results of groundwater in other arid area, it show that the groundwater in the desert and Yabulai area should be phreatic water which have a low water table. Therefore, we conclude that the groundwater in southeast part of the desert and southern margin mainly are recharged by precipitation of local abundant rainfall and groundwater of low mountain of southern area. 6. And all of these evidences, which are different from salinity, the content of CO32- and geological data, show that the bigger northern lake group and southeastern lake group in the desert have different groundwater replenishing system because a fold belt lie between of the two group lakes and obstruct them in landform. and HCO3- 7. The 14C dating results of fossil and lacustrine deposits show that there maybe have a wider range of shoreline during early and middle Holocene than today. 8. By the discovery and study of some pieces of pottery and fine stoneware, we preliminary conclude that there maybe have some certain amount of early human activities in the Badain Jaran Desert.
Resumo:
The thesis is an introduction to our attempts to evaluate the coordination behaviour of a few compounds of our interest. Semicarbazones and their metal complexes have been an active area of research during the past years because of the beneficial biological activities of these substances. Tridentate NNO semicarbazone systems formed from heterocyclic and aromatic carbonyl compounds and their transition metal complexes are well-authenticated compounds in this field and their synthesis and characterization are well desirable. Hence, we decided to develop a research program aimed at the synthesis and characterization of novel semicarbazones derived from 2-benzoylpyridine and 2-acetylpyridine and their transition metal complexes. In addition to various physicochemical methods of analysis, single crystal X—Ray diffraction studies were also used for the characterization of the complexes.
Resumo:
The fragmentation mechanisms of singlet oxygen [O(2) ((1)Delta(g))]-derived oxidation products of tryptophan (W) were analyzed using collision-induced dissociation coupled with (18)O-isotopic labeling experiments and accurate mass measurements. The five identified oxidized products, namely two isomeric alcohols (trans and cis WOH), two isomeric hydroperoxides (trans and cis WOOH), and N-formylkynurenine (FMK), were shown to share some common fragment ions and losses of small neutral molecules. Conversely, each oxidation product has its own fragmentation mechanism and intermediates, which were confirmed by (18)O-labeling studies. Isomeric WOH lost mainly H(2)O + CO, while WOOH showed preferential elimination of C(2)H(5)NO(3) by two distinct mechanisms. Differences in the spatial arrangement of the two isomeric WOHs led to differences in the intensities of the fragment ions. The same behavior was also found for trans and cis WOOH. FMK was shown to dissociate by a diverse range of mechanisms, with the loss of ammonia the most favored route. MS/MS analyses, (18)O-labeling, and H(2)(18)O experiments demonstrated the ability of FMK to exchange its oxygen atoms with water. Moreover, this approach also revealed that the carbonyl group has more pronounced oxygen exchange ability compared with the formyl group. The understanding of fragmentation mechanisms involved in O(2) ((1)Delta(g))-mediated oxidation of W provides a useful step toward the structural characterization of oxidized peptides and proteins. (J Am Soc Mass Spectrom 2009, 20, 188-197) (C) 2009 Published by Elsevier Inc. on behalf of American Society for Mass Spectrometry
Resumo:
The second-order rate constants of thiolysis by n-heptanethiol on 4-nitro-N-n-butyl-1,8-naphthalimide (4NBN) are strongly affected by the water-methanol binary mixture composition reaching its maximum at around 50% mole fraction. In parallel solvent effects on 4NBN absorption molar extinction coefficient also shows a maximum at this composition region. From the spectroscopic study of reactant and product and the known H-bond capacity of the mixture a rationalization that involves specific solvent H-donor interaction with the nitro group is proposed to explain the kinetic data. Present findings also show a convenient methodology to obtain strongly fluorescent imides, valuable for peptide and analogs labeling as well as for thio-naphthalimide derivatives preparations. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
Well-established statistical approaches such as transition-state theory based on high-level calculated potential energy profiles are unable to account for the selectivity observed in the gas-phase OH- + CH3ONO2 reaction. This reaction can undergo bimolecular nucleophilic displacement at either the carbon center (S(N)2@C) or the nitrogen center (S(N)2@N) as well as a proton abstraction followed by dissociation (E(CO)2) pathway. Direct dynamics simulations yield an S(N)2:E(CO)2 product ratio in close agreement with experiment and show that the lack of reactivity at the nitrogen atom is due to the highly negative electrostatic potential generated by the oxygen atoms in the ONO2 group that scatters the incoming OH-. In addition to these dynamical effects, the nonstatistical behavior of these reactions is attributed to the absence of equilibrated reactant complexes and to the large number of recrossings, which might be present in several ion-molecule gas-phase reactions.
Resumo:
In order to understand the influence of alkyl side chains on the gas-phase reactivity of 1,4-naphthoquinone derivatives, some 2-hydroxy-1,4-naphthoquinone derivatives have been prepared and studied by electrospray ionization tandem mass spectrometry in combination with computational quantum chemistry calculations. Protonation and deprotonation sites were suggested on the basis of gas-phase basicity, proton affinity, gas-phase acidity (?Gacid), atomic charges and frontier orbital analyses. The nature of the intramolecular interaction as well as of the hydrogen bond in the systems was investigated by the atoms-in-molecules theory and the natural bond orbital analysis. The results were compared with data published for lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone). For the protonated molecules, water elimination was verified to occur at lower proportion when compared with side chain elimination, as evidenced in earlier studies on lapachol. The side chain at position C(3) was found to play important roles in the fragmentation mechanisms of these compounds. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
It was observed in the ‘80s that the radiation damage on biological systems strongly depends on processes occurring at the microscopic level, involving the elementary constituents of biological cells. Since then, lot of attention has been paid to study elementary processes of photo- and ion-chemistry of isolated organic molecule of biological interest. This work fits in this framework and aims to study the radiation damage mechanisms induced by different types of radiations on simple halogenated biomolecules used as radiosensitizers in radiotherapy. The research is focused on the photofragmentation of halogenated pyrimidine molecules (5Br-pyrimidine, 2Br-pyrimidine and 2Cl-pyrimidine) in the VUV range and on the 12C4+ ion-impact fragmentation of the 5Br-uracil and its homogeneous and hydrated clusters. Although halogen substituted pyrimidines have similar structure to the pyrimidine molecule, their photodissociation dynamics is quite different. These targets have been chosen with the purpose of investigating the effect of the specific halogen atom and site of halogenation on the fragmentation dynamics. Theoretical and experimental studies have highlighted that the site of halogenation and the type of halogen atom, lead either to the preferential breaking of the pyrimidinic ring or to the release of halogen/hydrogen radicals. The two processes can subsequently trigger different mechanisms of biological damage. To understand the effect of the environment on the fragmentation dynamic of the single molecule, the ion-induced fragmentation of homogenous and hydrated clusters of 5Br-uracil have been studied and compared to similar studies on the isolated molecule. The results show that the “protective effect” of the environment on the single molecule hold in the homogeneous clusters, but not in the hydrated clusters, where several hydrated fragments have been observed. This indicates that the presence of water molecules can inhibit some fragmentation channels and promote the keto-enol tautomerization, which is very important in the mutagenesis of the DNA.
Resumo:
The crucial role of oxide surface chemical composition on ion transport in "soggy sand" electrolytes is discussed in a systematic manner. A prototype soggy sand electrolytic system comprising aerosil silica functionalized with various hydrophilic and hydrophobic moieties dispersed in lithium perchlorate-ethylene glycol solution was used for the study. Detailed rheology studies show that the attractive particle network in the case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity, as well as rendering the composite with beneficial elastic mechanical properties: Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. The percolation in ionic conductivity is, however, dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol), and as a result, no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol, contrary to gels obtained in the case of unmodified aerosil, and partially substituted with hydrophobic groups.
Resumo:
Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.
Resumo:
Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.
Resumo:
The photochemical cis-trans isomerization of the 4-{4-[2-(pyridin-4-yl)ethenyl]phenyl}-2,2': 6',2''-terpyridine ligand (vpytpy) was investigated by UV-vis, NMR and TWIM-MS. Ion mobility mass spectrometry was performed pursuing the quantification of the isomeric composition during photolysis, however an in-source trans-to-cis isomerization process was observed. In order to overcome this inherent phenomenon, the isomerization of the vpytpy species was suppressed by complexation, reacting with iron(II) ions, and forming the [Fe(vpytpy)(2)](2+) complex. The strategy of "freezing" the cis-trans isomerizable ligand at a given geometric conformation was effective, preventing further isomerization, thus allowing the distinction of each one of the isomers in the photolysed mixture. In addition, the experimental drift times were related to the calculated surface areas of the three possible cis-cis, cis-trans and trans-trans iron(II) complex isomers. The stabilization of the ligand in a given conformation also allows us to obtain the cis-cis and cis-trans complexes exhibiting the ligand in the metastable cis-conformation, as well as in the thermodynamically stable trans-conformation.