945 resultados para INTERMOLECULAR VIBRATIONS
Resumo:
Amyloid-beta peptide (A beta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic A beta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/ peptide ratios of > 0.6:1 by EPR spectroscopy. The toxicity of the A beta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi- or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl- 1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. P-31 magic angle spinning solid-state NMR showed that A beta and A beta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the A beta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.
Resumo:
Two N-based isomeric copper(II) complexes of the macrocycle trans-6,13-dimethyl-6,13-bis(dimethylamino)1,4,8,11-tetraazacyclotetradecane (L(3)) have been synthesized and characterised spectroscopically and structurally: alpha-[CuL(3)(OH2)(2)]Cl-2, monoclinic, space group C2/m, a = 12.908(4), b = 12.433(2), c = 7.330(2) Angstrom, beta = 105.87(2)degrees, Z = 2; beta-[CuL(3)(OClO3)(2)]. 2H(2)O, monoclinic, space group P2(1)/c, a = 9.708(3), b = 9.686(3), c = 14.202(4) Angstrom, beta = 106.17(1)degrees, Z = 2. The two isomers exhibit very similar co-ordination spheres but significantly different visible electronic maxima. This difference is attributed to an intramolecular N ... H contact between the pendant dimethylamino group and an adjacent secondary amine H atom.
Resumo:
A family of 9H-thioxanthen-9-one derivatives and two precursors, 2-[(4-bromophenyl) sulfanyl]-5-nitrobenzoic acid and 2-[(4-aminophenyl) sulfanyl]-5-nitrobenzoic acid, were synthesized and studied in order to assess the role of the different substituent groups in determining the supramolecular motifs. From our results we can conclude that Etter's rules are obeyed: whenever present the -COOH head to head strong hydrogen bonding dimer, R-2(2)(8) synthon, prevails as the dominant interaction. As for -NH2, the best donor when present also follows the expected hierarchy, an NH center dot center dot center dot O(COOH) was formed in the acid precursor (2) and an NH center dot center dot center dot O(C=O) in the thioxanthone (4). The main role played by weaker hydrogen bonds such as CH center dot center dot center dot O, and other intermolecular interactions, pi-pi and Br center dot center dot center dot O, as well as the geometric restraints of packing patterns shows the energetic interplay governing crystal packing. A common feature is the relation between the p-p stacking and the unit cell dimensions. A new synthon notation, R`, introduced in this paper, refers to the possibility of accounting for intra- and intermolecular interactions into recognizable and recurring aggregate patterns.
Resumo:
Solvatochromic UV-Vis shifts of four indicators (4-nitroaniline, 4-nitroanisole, 4-nitrophenol and N,N-dimethy-1-4-nitro aniline) have been measured at 298.15 K in the ternary mixture methano1/1-propanol/acetonitrile (MeOH/1-PrOH/MeCN) in a total of 22 mole fractions, along with 18 additional mole fractions for each of the corresponding binary mixtures, MeOH/1-PrOH, 1-PrOH/MeCN and MeOH/MeCN. These values, combined with our previous experimental results for 2,6-dipheny1-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (Reichardt's betaine dye) in the same mixtures, permitted the computation of the Kamlet-Taft solvent parameters, alpha, beta, and pi*. The rationalization of the spectroscopic behavior of each probe within each mixture's whole mole fraction range was achieved through the use of the Bosch and Roses preferential solvation model. The applied model allowed the identification of synergistic behaviors in MeCN/alcohol mixtures and thus to infer the existence of solvent complexes in solution. Also, the addition of small amounts of MeCN to the binary mixtures was seen to cause a significant variation in pi*, whereas the addition of alcohol to MeCN mixtures always lead to a sudden change in a and The behavior of these parameters in the ternary mixture was shown to be mainly determined by the contributions of the underlying binary mixtures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. In order to acquire and study the signals an experimental setup is implemented. The signals are treated through signal processing tools such as the fast Fourier transform and the short time Fourier transform. The results show that the Fourier spectrum of several signals presents a non integer behavior. The experimental study provides valuable results that can assist in the design of a control system to deal with the unwanted effects of vibrations.
Resumo:
In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. In more details, cantilever dynamic response, expressed in terms of vertical displacement, is extended to account for elastic foundation and then two cantilever solutions, corresponding to beams clamped on left and right hand side, with different value of Winkler constant are connected together by continuity conditions. The internal forces, as the unknowns, can be introduced by the same values in both clamped beam solutions and solved. Assumption about time variation of internal forces at the section of discontinuity must be adopted and originally analytical solution will have to include numerical procedure.
Resumo:
High speed trains, when crossing regions with abrupt changes in vertical stiffness of the track and/or subsoil, may generate excessive ground and track vibrations. There is an urgent need for specific analyses of this problem so as to allow reliable esimates of vibration amplitude. Full understanding of these phenomena will lead to new construction solutions and mitigation of undesirable features. In this paper analytical transient solutions of dynamic response of one-dimensional systems with sudden change of foundation stiffness are derived. Results are expressed in terms of vertical displacement. Sensitivity analysis of the response amplitude is also performed. The analytical expressions presented herein, to the authors’ knowledge, have not been published yet. Although related to one-dimensional cases, they can give useful insight into the problem. Nevertheless, in order to obtain realistic response, vehicle- rail interaction cannot be omitted. Results and conclusions are confirmed using general purpose commercial software ANSYS. In conclusion, this work contributes to a better understanding of the additional vibration phenomenon due to vertical stiffness variation, permitting better control of the train velocity and optimization of the track design.
Resumo:
Transversal vibrations induced by a load moving uniformly along an infinite beam resting on a piece-wise homogeneous visco-elastic foundation are studied. Special attention is paid to the additional vibrations, conventionally referred to as transition radiations, which arise as the point load traverses the place of foundation discontinuity. The governing equations of the problem are solved by the normalmode analysis. The solution is expressed in a form of infinite sum of orthogonal natural modes multiplied by the generalized coordinate of displacement. The natural frequencies are obtained numerically exploiting the concept of the global dynamic stiffness matrix. This ensures that the frequencies obtained are exact. The methodology has restrictions neither on velocity nor on damping. The approach looks simple, though, the numerical expression of the results is not straightforward. A general procedure for numerical implementation is presented and verified. To illustrate the utility of the methodology parametric optimization is presented and influence of the load mass is studied. The results obtained have direct application in analysis of railway track vibrations induced by high-speed trains when passing regions with significantly different foundation stiffness.
Resumo:
A theory of free vibrations of discrete fractional order (FO) systems with a finite number of degrees of freedom (dof) is developed. A FO system with a finite number of dof is defined by means of three matrices: mass inertia, system rigidity and FO elements. By adopting a matrix formulation, a mathematical description of FO discrete system free vibrations is determined in the form of coupled fractional order differential equations (FODE). The corresponding solutions in analytical form, for the special case of the matrix of FO properties elements, are determined and expressed as a polynomial series along time. For the eigen characteristic numbers, the system eigen main coordinates and the independent eigen FO modes are determined. A generalized function of visoelastic creep FO dissipation of energy and generalized forces of system with no ideal visoelastic creep FO dissipation of energy for generalized coordinates are formulated. Extended Lagrange FODE of second kind, for FO system dynamics, are also introduced. Two examples of FO chain systems are analyzed and the corresponding eigen characteristic numbers determined. It is shown that the oscillatory phenomena of a FO mechanical chain have analogies to electrical FO circuits. A FO electrical resistor is introduced and its constitutive voltage–current is formulated. Also a function of thermal energy FO dissipation of a FO electrical relation is discussed.
Resumo:
J Biol Inorg Chem (2007) 12:691–698 DOI 10.1007/s00775-007-0219-9
Resumo:
The work reported in this thesis addresses the research question of when and how positive psychological states impact positive behavior and positive organizational development. We present two theoretical essays and three empirical studies to find possible answers to this question and we use a multitude of methodologies with different epistemological assumptions, including quantitative correlation analysis, social network analysis and qualitative grounded theory analysis. In the whole, our work shows that positive psychological states are fundamental to promote individual and organizational higher-levels of performance and well-being. It also points that the capability to induce positive psychological states in others (an “alter-positive” approach) is a powerful way to develop outstanding individuals and organizations. In a broader sense, it stresses the need to promote good vibrations as a fundamental route to create a better world.
Resumo:
The existence of life in extreme conditions, in particular in extraterrestrial environments, is certainly one of the most intriguing scientific questions of our time. In this report, we demonstrate the use of an innovative nanoscale motion sensor in life-searching experiments in Earth-bound and interplanetary missions. This technique exploits the sensitivity of nanomechanical oscillators to transduce the small fluctuations that characterize living systems. The intensity of such movements is an indication of the viability of living specimens and conveys information related to their metabolic activity. Here, we show that the nanomotion detector can assess the viability of a vast range of biological specimens and that it could be the perfect complement to conventional chemical life-detection assays. Indeed, by combining chemical and dynamical measurements, we could achieve an unprecedented depth in the characterization of life in extreme and extraterrestrial environments.
Resumo:
The vibration syndrome is an often unrecognized occupational neurovascular disease with a prevalence of more than 70% in certain high-risk occupations. Early recognition is crucial because continued exposure to vibration can lead to irreversible ischemic injury and loss of digits. Digital ischemia due to the vibration syndrome may be due to a vasospastic phenomenon, an organic microangiopathy or arterial thrombosis. Demyelinating neuropathy and carpal tunnel syndrome are often associated. Many pathophysiological mechanisms are implicated: hyperactivity of the central sympathetic nervous system, release of plasma endothelin-1 and loss of calcitonin-gene-related-peptide vasoregulation. Investigation tests, treatment and the European Community Directive for the protection of workers are also presented.
Resumo:
In the finite field (FF) treatment of vibrational polarizabilities and hyperpolarizabilities, the field-free Eckart conditions must be enforced in order to prevent molecular reorientation during geometry optimization. These conditions are implemented for the first time. Our procedure facilities identification of field-induced internal coordinates that make the major contribution to the vibrational properties. Using only two of these coordinates, quantitative accuracy for nuclear relaxation polarizabilities and hyperpolarizabilities is achieved in π-conjugated systems. From these two coordinates a single most efficient natural conjugation coordinate (NCC) can be extracted. The limitations of this one coordinate approach are discussed. It is shown that the Eckart conditions can lead to an isotope effect that is comparable to the isotope effect on zero-point vibrational averaging, but with a different mass-dependence
Resumo:
An overview is given on a study which showed that not only in chemical reactions but also in the favorable case of nontotally symmetric vibrations where the chemical and external potentials keep approximately constant, the generalized maximum hardness principle (GMHP) and generalized minimum polarizability principle (GMPP) may not be obeyed. A method that allows an accurate determination of the nontotally symmetric molecular distortions with more marked GMPP or anti-GMPP character through diagonalization of the polarizability Hessian matrix is introduced