950 resultados para INSULIN-PRODUCING CELLS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The β cell-specific glucose-sensitive factor (GSF), which binds the A3 motif of the rat I and human insulin promoters, is modulated by extracellular glucose. A single mutation in the GSF binding site of the human insulin promoter abolishes the stimulation by high glucose only in normal islets, supporting the suggested physiological role of GSF in the glucose-regulated expression of the insulin gene. GSF binding activity was observed in all insulin-producing cells. We have therefore purified this activity from the rat insulinoma RIN and found that a single polypeptide of 45 kDa was responsible for DNA binding. Its amino acid sequence, determined by microsequencing, provided direct evidence that GSF corresponds to insulin promoter factor 1 (IPF-1; also known as PDX-1) and that, in addition to its essential roles in development and differentiation of pancreatic islets and in β cell-specific gene expression, it functions as mediator of the glucose effect on insulin gene transcription in differentiated β cells. The human cDNA coding for GSF/IPF-1 has been cloned, its cell and tissue distribution is described. Its expression in the glucagon-producing cell line αTC1 transactivates the wild-type human insulin promoter more efficiently than the mutated construct. It is demonstrated that high levels of ectopic GSF/IPF-1 inhibit the expression of the human insulin gene in normal islets, but not in transformed βTC1 cells. These results suggest the existence of a control mechanism, such as requirement for a coactivator of GSF/IPF-1, which may be present in limiting amounts in normal as opposed to transformed β cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biopsies from human localized cutaneous lesions (LCL n = 7) or disseminated lesions (DL n = 8) cases were characterized according to cellular infiltration,frequency of cytokine (IFN-g, TNF-alpha) or iNOS enzyme producing cells. LCL, the most usual form of the disease with usually one or two lesions, exhibits extensive tissue damage. DL is a rare form with widespread lesions throughout the body; exhibiting poor parasite containment but less tissue damage. We demonstrated that LCL lesions exhibit higher frequency of B lymphocytes and a higher intensity of IFN-gamma expression. In both forms of the disease CD8+ were found in higher frequency than CD4+ T cells. Frequency of TNF-alpha and iNOS producing cells, as well as the frequency of CD68+ macrophages, did not differ between LCL and DL. Our findings reinforce the link between an efficient control of parasite and tissue damage, implicating higher frequency of IFN-gamma producing cells, as well as its possible counteraction by infiltrated B cells and hence possible humoral immune response in situ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Résumé Régulation de l'expression de la Connexin36 dans les cellules sécrétrices d'insuline La communication intercellulaire est en partie assurée via des jonctions communicantes de type "gap". Dans la cellule ß pancréatique, plusieurs observations indiquent que le couplage assuré par des jonctions gap formées parla Connexine36 (Cx36) est impliqué dans le contrôle de la sécrétion de l'insuline. De plus, nous avons récemment démontré qu'un niveau précis d'expression de la Cx36 est nécessaire pour maintenir une bonne coordination de l'ensemble des cellules ß, et permettre ainsi une sécrétion synchrone et contrôlée d'insuline. Le développement du diabète et du syndrome métabolique est partiellement dû à une altération de la capacité des cellules ß à sécréter de l'insuline en réponse à une augmentation de la glycémie. Cette altération est en partie causée par l'augmentation prolongée des taux circulant de glucose, mais aussi de lipides, sous la forme d'acides gras libres, et de LDL (Low Density Lipoproteins), particules assurant le transport des acides gras et du cholestérol dans le sang. Nous avons étudié la régulation de l'expression de la Cx36 dans différentes conditions reflétant la physiopathologie du diabète de type 2 et du syndrome métabolique et démontré qu'une exposition prolongée à des concentrations élevées de glucose, de LDL, ainsi que de palmitate (acide gras saturé le plus abondant dans l'organisme), inhibent l'expression de la Cx36 dans les cellules ß. Cette inhibition implique l'activation de la PKA (Proteine Kinase A), qui stimule à son tour l'expression du facteur de transcription ICER-1 (Inductible cAMP Early Repressor-1). Ce puissant répresseur se fixe spécifiquement sur un motif CRE (cAMP Response Element), situé dans le promoteur du gène de la Cx36, inhibant ainsi son expression. Nous avons de plus démontré que des cytokines pro-inflammatoires, qui pourraient contribuer au développement du diabète, inhibent également l'expression de la Cx36. Cependant, les cytokines agissent indépendamment du répresseur ICER-1, mais selon un mécanisme requérant l'activation de l'AMPK (AMP dependant protein kinase). Sachant qu'un contrôle précis des niveaux d'expression de la Cx36 est un élément déterminant pour une sécrétion optimale de l'insuline, nos résultats suggèrent que la Cx36 pourrait être impliquée dans l'altération de la sécrétion de l'insuline contribuant à l'apparition du diabète de type 2. Summary A particular way by which cells communicate with each other is mediated by gap junctions, transmembrane structures providing a direct pathway for the diffusion of small molecules between adjacent cells. Gap junctional communication is required to maintain a proper functioning of insulin-secreting ß-cells. Moreover, the expression levels of connexin36 (Cx36), the sole gap junction protein expressed in ß-cells, are critical in maintaining glucose-stimulated insulin secretion. Chronic hyperglycemia and hyperlipidemia exert deleterious effects on insulin secretion and may contribute to the progressive ß-cell failure linked to the development of type 2 diabetes and metabolic syndrome. Since modulations of the Cx36 levels might impair ß-cell function, the general aim of this work was to elucidate wether elevated levels of glucose and lipids affect Cx36 expression. The first part of this work was dedicated to the study of the effect of high glucose concentrations on Cx36 expression. We demonstrated that glucose transcriptionally down-regulates the expression of Cx36 in insulin-secreting cells through activation of the protein kinase A (PKA), which in turn stimulates the expression of the inducible cAMP early repressor-1 (ICER-1). This repressor binds to a highly conserved cAMP response element (CRE) located in the Cx36 promoter, thereby inhibiting Cx36 expression. The second part of this thesis consisted in studying the effects of sustained exposure to free fatty acids (FFA) and human lipoproteins on Cx36 levels. The experiments revealed that the most abundant FFA, palmitate, as well as the atherogenic low density lipoproteins (LDL), also stimulate ICER-1 expression, resulting in Cx36 down-regulation. Finally, the third part of the work focused on the consequences of long-term exposure to proinflammatory cytokines on Cx36 content. Interleukin-1 ß (IL-1 ß) inhibits Cx36 expression and its effect is potentialized by tumor necrosis factor α (TNFα) and interferon γ (IFNγ). We further unveiled that the cytokines effect on Cx36 levels requires activation of the AMP dependent protein kinase (AMPK). Prolonged exposures to glucose, palmitate, LDL, and pro-inflammatory cytokines have all been proposed to contribute to the development of diabetes and metabolic syndrome. Since Cx36 expression levels are critical to maintain ß-cell function, Cx36 down-regulation by glucose, lipids, and cytokines might participate to the ß-cell failure associated with diabetes development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Progenitor cells can be obtained by outgrowth from tissue explants during primary ex vivo tissue culture. We have isolated and characterized cells outgrown from neonatal mouse pancreatic explants. A relatively uniform population of cells showing a distinctive morphology emerged over time in culture. This population expressed monocyte/macrophage and hematopoietic markers (CD11b(+) and CD45(+)), and some stromal-related markers (CD44(+) and CD29(+)), but not mesenchymal stem cell (MSC)-defining markers (CD90(-) and CD105(-)) nor endothelial (CD31(-)) or stem cell-associated markers (CD133(-) and stem cell antigen-1; Sca-1(-)). Cells could be maintained in culture as a plastic-adherent monolayer in culture medium (MesenCult MSC) for more than 1 year. Cells spontaneously formed sphere clusters "pancreatospheres" which, however, were nonclonal. When cultured in appropriate media, cells differentiated into multiple mesenchymal lineages (fat, cartilage, and bone). Positive dithizone staining suggested that a subset of cells differentiated into insulin-producing cells. However, further studies are needed to characterize the endocrine potential of these cells. These findings indicate that a myelomonocytoid population from pancreatic explant outgrowths has mesenchymal differentiation potential. These results are in line with recent data onmonocyte-derivedmesenchymal progenitors (MOMPs).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS/HYPOTHESIS: In insulin-secreting cells, activation of the c-Jun NH(2)-terminal kinase (JNK) pathway triggers apoptosis. Whereas JNK1 and JNK2 are ubiquitously produced, JNK3 has been described exclusively in neurons. This report aims to characterise the expression and role in apoptosis of the three JNK isoforms in insulin-secreting cells exposed to cytokines. METHODS: Sections of human and mouse pancreases were used for immunohistochemistry studies with isoform-specific anti-JNK antibodies. Human, pig, mouse and rat pancreatic islets were isolated by enzymatic digestion and RNA or protein extracts were prepared. RNA and protein levels were determined by quantitative RT-PCR and western blotting respectively, using JNK-isoform-specific primers and isoform-specific antibodies; activities of the three JNK isoforms were determined by kinase assays following quantitative immunoprecipitation/depletion of JNK3. JNK silencing was performed with small interfering RNAs and apoptotic rates were determined in INS-1E cells by scoring cells displaying pycnotic nuclei. RESULTS: JNK3 and JNK2 mRNAs are the predominant isoforms expressed in human pancreatic islets. JNK3 is nuclear while JNK2 is also cytoplasmic. In INS-1E cells, JNK3 knockdown increases c-Jun levels and caspase-3 cleavage and sensitises cells to cytokine-induced apoptosis; in contrast, JNK1 or JNK2 knockdown is protective. CONCLUSIONS/INTERPRETATION: In insulin-secreting cells, JNK3 plays an active role in preserving pancreatic beta cell mass from cytokine attacks. The specific localisation of JNK3 in the nucleus, its recruitment by cytokines, and its effects on key transcription factors such as c-Jun, indicate that JNK3 is certainly an important player in the transcriptional control of genes expressed in insulin-secreting cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine-tuning of insulin secretion from pancreatic beta-cells participates in blood glucose homeostasis. Defects in this process can lead to chronic hyperglycemia and diabetes mellitus. Several proteins controlling insulin exocytosis have been identified, but the mechanisms regulating their expression remain poorly understood. Here, we show that two non-coding microRNAs, miR124a and miR96, modulate the expression of proteins involved in insulin exocytosis and affect secretion of the beta-cell line MIN6B1. miR124a increases the levels of SNAP25, Rab3A and synapsin-1A and decreases those of Rab27A and Noc2. Inhibition of Rab27A expression is mediated by direct binding to the 3'-untranslated region of Rab27A mRNA. The effect on the other genes is indirect and linked to changes in mRNA levels. Over-expression of miR124a leads to exaggerated hormone release under basal conditions and a reduction in glucose-induced secretion. miR96 increases mRNA and protein levels of granuphilin, a negative modulator of insulin exocytosis, and decreases the expression of Noc2, resulting in lower capacity of MIN6B1 cells to respond to secretagogues. Our data identify miR124a and miR96 as novel regulators of the expression of proteins playing a critical role in insulin exocytosis and in the release of other hormones and neurotransmitters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

JIP-1 is a cytoplasmic inhibitor of the c-Jun amino-terminal kinase activated pathway recently cloned from a mouse brain cDNA library. We report herein the expression cloning of a rat cDNA encoding a JIP-1-related nuclear protein from a pancreatic beta-cell cDNA library that we named IB1 for Islet-Brain 1. IB1 was isolated by its ability to bind to GTII, a cis-regulatory element of the GLUT2 promoter. The IB1 cDNA encodes a 714-amino acid protein, which differs from JIP-1 by the insertion of 47 amino acids in the carboxyl-terminal part of the protein. The remaining 667 amino acids are 97% identical to JIP-1. The 47-amino acid insertion contains a truncated phosphotyrosine interaction domain and a putative helix-loop-helix motif. Recombinant IB1 (amino acids 1-714 and 280-714) was shown to bind in vitro to GTII. Functionally IB1 transactivated the GLUT2 gene. IB1 was localized within the cytoplasm and the nucleus of insulin-secreting cells or COS-7 cells transfected with an expression vector encoding IB1. Using a heterologous GAL4 system, we localized an activation domain of IB1 within the first 280 amino acids of the protein. These data demonstrate that IB1 is a DNA-binding protein related to JIP-1, which is highly expressed in pancreatic beta-cells where it functions as a transactivator of the GLUT2 gene.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is an important regulator of glucose homeostasis. In pancreatic beta-cells, MIF expression is regulated by glucose and its secretion potentiates the glucose-induced insulin secretion. The molecular mechanisms by which glucose mediates its effect on MIF expression are not elucidated. Herein, we report that incubating the differentiated insulin-secreting cell line INS-1 in high glucose concentration increases MIF transcriptional activity as well as the reporter gene activity driven by the -1033 to +63 bp fragment of the MIF promoter. A minimal region located between -187 and -98 bp of this promoter sequence contributes both to basal activity and glucose-responsiveness of the gene. Within this promoter region, two cis-binding sequences were identified by mobility shift assays and footprinting experiments. Both cis-elements interact with nuclear proteins expressed specifically in insulin-secreting cells. In conclusion, we identified a minimal region of the MIF promoter which contributes to the glucose stimulation of the mif gene in insulin-secreting cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca(2+) stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca(2+) homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin 40 (Cx40) is expressed by the renin-producing cells (RSCs) of the kidneys and the endothelial cells of blood vessels. Cx40 null mice (Cx40(-/-)) feature a much increased renin synthesis and secretion, which results in chronic hypertension, and also display an altered endothelium-dependent relaxation of the aorta because of reduced eNOS levels and nitric oxide production. To discriminate the effect of Cx40 in renin secretion and vascular signaling, we targeted Cx40 to either the RSCs or the endothelial cells of Cx40 null mice. When compared with Cx40(-/-) controls, the animals expressing Cx40 in RSCs were less hypertensive and featured reduced renin levels, still numerous RSCs outside the wall of the afferent arterioles. In contrast, mice expressing Cx40 in the endothelial cells were as hypertensive as Cx40(-/-) mice, in spite of control levels of Cx37 and eNOS. Our data show that blood pressure is improved by restoration of Cx40 expression in RSCs but not in endothelial cells, stressing the prominent role of renin in the mouse hypertension linked to loss of Cx40.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Connexin36 (Cx36), a trans-membrane protein that forms gap junctions between insulin-secreting beta-cells in the Langerhans islets, contributes to the proper control of insulin secretion and beta-cell survival. Hypercholesterolemia and pro-atherogenic low density lipoproteins (LDL) contribute to beta-cell dysfunction and apoptosis in the context of Type 2 diabetes. We investigated the impact of LDL-cholesterol on Cx36 levels in beta-cells. As compared to WT mice, the Cx36 content was reduced in islets from hypercholesterolemic ApoE-/- mice. Prolonged exposure to human native (nLDL) or oxidized LDL (oxLDL) particles decreased the expression of Cx36 in insulin secreting cell-lines and isolated rodent islets. Cx36 down-regulation was associated with overexpression of the inducible cAMP early repressor (ICER-1) and the selective disruption of ICER-1 prevented the effects of oxLDL on Cx36 expression. Oil red O staining and Plin1 expression levels suggested that oxLDL were less stored as neutral lipid droplets than nLDL in INS-1E cells. The lipid beta-oxidation inhibitor etomoxir enhanced oxLDL-induced apoptosis whereas the ceramide synthesis inhibitor myriocin partially protected INS-1E cells, suggesting that oxLDL toxicity was due to impaired metabolism of the lipids. ICER-1 and Cx36 expressions were closely correlated with oxLDL toxicity. Cx36 knock-down in INS-1E cells or knock-out in primary islets sensitized beta-cells to oxLDL-induced apoptosis. In contrast, overexpression of Cx36 partially protected INS-1E cells against apoptosis. These data demonstrate that the reduction of Cx36 content in beta-cells by oxLDL particles is mediated by ICER-1 and contributes to oxLDL-induced beta-cell apoptosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apoptosis of pancreatic beta cells is implicated in the onset of type 1 and type 2 diabetes. Consequently, strategies aimed at increasing the resistance of beta cells toward apoptosis could be beneficial in the treatment of diabetes. RasGAP, a regulator of Ras and Rho GTPases, is an atypical caspase substrate, since it inhibits, rather than favors, apoptosis when it is partially cleaved by caspase-3 at position 455. The antiapoptotic signal generated by the partial processing of RasGAP is mediated by the N-terminal fragment (fragment N) in a Ras-phosphatidylinositol 3-kinase-Akt-dependent, but NF-kappaB-independent, manner. Further cleavage of fragment N at position 157 abrogates its antiapoptotic properties. Here we demonstrate that an uncleavable form of fragment N activates Akt, represses NF-kappaB activity, and protects the conditionally immortalized pancreatic insulinoma betaTC-tet cell line against various insults, including exposure to genotoxins, trophic support withdrawal, and incubation with inflammatory cytokines. Fragment N also induced Akt activity and protection against cytokine-induced apoptosis in primary pancreatic islet cells. Fragment N did not alter insulin cell content and insulin secretion in response to glucose. These data indicate that fragment N protects beta cells without affecting their function. The pathways regulated by fragment N are therefore promising targets for antidiabetogenic therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The absence of the transcriptional repressor RE-1 Silencing Transcription Factor (REST) in insulin-secreting beta cells is a major cue for the specific expression of a large number of genes. These REST target genes were largely ascribed to a function of neurotransmission in a neuronal context, whereas their role in pancreatic beta cells has been poorly explored. To identify their functional significance, we have generated transgenic mice expressing REST in beta cells (RIP-REST mice), and previously discovered that REST target genes are essential to insulin exocytosis. Herein we characterized a novel line of RIP-REST mice featuring diabetes. In diabetic RIP-REST mice, high levels of REST were associated with postnatal beta cell apoptosis, which resulted in gradual beta cell loss and sustained hyperglycemia in adults. Moreover, adenoviral REST transduction in INS-1E cells led to increased cell death under control conditions, and sensitized cells to death induced by cytokines. Screening for REST target genes identified several anti-apoptotic genes bearing the binding motif RE-1 that were downregulated upon REST expression in INS-1E cells, including Gjd2, Mapk8ip1, Irs2, Ptprn, and Cdk5r2. Decreased levels of Cdk5r2 in beta cells of RIP-REST mice further confirmed that it is controlled by REST, in vivo. Using siRNA-mediated knock-down in INS-1E cells, we showed that Cdk5r2 protects beta cells against cytokines and palmitate-induced apoptosis. Together, these data document that a set of REST target genes, including Cdk5r2, is important for beta cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have recently shown that silencing of the brain/islet specific c-Jun N-terminal Kinase3 (JNK3) isoform enhances both basal and cytokine-induced beta-cell apoptosis, whereas silencing of JNK1 or JNK2 has opposite effects. While it is known that JNK1 or JNK2 may promote apoptosis by inhibiting the activity of the pro-survival Akt pathway, the effect of JNK3 on Akt has not been documented. This study aims to determine the involvement of individual JNKs and specifically JNK3 in the regulation of the Akt signaling pathway in insulin-secreting cells. JNK3 silencing strongly decreases Insulin Receptor Substrate 2 (IRS2) protein expression, and blocks Akt2 but not Akt1 activation by insulin, while the silencing of JNK1 or JNK2 activates both Akt1 and Akt2. Concomitantly, the silencing of JNK1 or JNK2, but not of JNK3, potently phosphorylates the glycogen synthase kinase3 (GSK3β). JNK3 silencing also decreases the activity of the transcription factor Forkhead BoxO3A (FoxO3A) that is known to control IRS2 expression, in addition to increasing c-Jun levels that are known to inhibit insulin gene expression. In conclusion, we propose that JNK1/2 on one hand and JNK3 on the other hand, have opposite effects on insulin-signaling in insulin-secreting cells; JNK3 protects beta-cells from apoptosis and dysfunction mainly through maintenance of a normal IRS2 to Akt2 signaling pathway. It seems that JNK3 mediates its effects mainly at the transcriptional level, while JNK1 or JNK2 appear to mediate their pro-apoptotic effect in the cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tolérance immunitaire dépend de la distinction entre le soi et le non soi par le système immunitaire. Un bris dans la tolérance immunitaire mène à l'auto-immunité, qui peut provoquer la destruction des organes, des glandes, des articulations ou du système nerveux central. Le diabète auto-immun, également connu sous le nom diabète juvénile et diabète de type 1, résulte d'une attaque auto-immune sur les cellules β pancréatiques sécrétrices d’insuline, localisées au niveau des îlots de Langerhans du pancréas. Bien que le diabète auto-immun soit traitable par une combinaison d’injections quotidiennes d’insuline d’origine exogène, de régime et d'exercices, beaucoup de complications chroniques peuvent se manifester chez les patients, y compris, mais non limitées à, la cécité, les maladies cardiovasculaires, l’insuffisance rénale et l'amputation. En raison des nombreuses complications liées au diabète auto-immun à long terme, la recherche continue afin de mieux comprendre tous les facteurs impliqués dans la progression de la maladie dans le but de développer de nouvelles thérapies qui empêcheront, renverseront et/ou traiteront cette maladie. Un rôle primordial dans la génération et l'entretien de la tolérance immunitaire a été attribué au nombre et à la fonction des sous-populations de cellules régulatrices. Une de ces populations est constituée de cellules T CD4-CD8- (double négatives, DN), qui ont été étudiées chez la souris et l'humain pour leur contribution à la tolérance périphérique, à la prévention des maladies et pour leur potentiel associé à la thérapie cellulaire. En effet, les cellules de T DN sont d'intérêt thérapeutique parce qu'elles montrent un potentiel immunorégulateur antigène-spécifique dans divers cadres expérimentaux, y compris la prévention du diabète auto-immun. D’ailleurs, en utilisant un système transgénique, nous avons démontré que les souris prédisposées au diabète auto-immun présentent peu de cellules T DN, et que ce phénotype contribue à la susceptibilité au diabète auto-immun. En outre, un transfert des cellules T DN est suffisant pour empêcher la progression vers le diabète chez les souris prédisposées au diabète auto-immun. Ces résultats suggèrent que les cellules T DN puissent présenter un intérêt thérapeutique pour les patients diabétiques. Cependant, nous devons d'abord valider ces résultats en utilisant un modèle non-transgénique, qui est plus physiologiquement comparable à l'humain. L'objectif principal de cette thèse est de définir la fonction immunorégulatrice des cellules T DN, ainsi que le potentiel thérapeutique de celles-ci dans la prévention du diabète auto-immun chez un modèle non-transgénique. Dans cette thèse, on démontre que les souris résistantes au diabète auto-immun présentent une proportion et nombre absolu plus élevés de cellules T DN non-transgéniques, lorsque comparées aux souris susceptibles. Cela confirme une association entre le faible nombre de cellules T DN et la susceptibilité à la maladie. On observe que les cellules T DN éliminent les cellules B activées in vitro par une voie dépendante de la voie perforine et granzyme, où la fonction des cellules T DN est équivalente entre les souris résistantes et prédisposées au diabète auto-immun. Ces résultats confirment que l'association au diabète auto-immun est due à une insuffisance en terme du nombre de cellules T DN, plutôt qu’à une déficience fonctionnelle. On démontre que les cellules T DN non-transgéniques éliminent des cellules B chargées avec des antigènes d'îlots, mais pas des cellules B chargées avec un antigène non reconnu, in vitro. Par ailleurs, on établit que le transfert des cellules T DN activées peut empêcher le développement du diabète auto-immun dans un modèle de souris non-transgénique. De plus, nous observons que les cellules T DN migrent aux îlots pancréatiques, et subissent une activation et une prolifération préférentielles au niveau des ganglions pancréatiques. D'ailleurs, le transfert des cellules T DN entraîne une diminution d'auto-anticorps spécifiques de l'insuline et de cellules B de centres germinatifs directement dans les îlots, ce qui corrèle avec les résultats décrits ci-dessus. Les résultats présentés dans cette thèse permettent de démontrer la fonction des cellules T DN in vitro et in vivo, ainsi que leur potentiel lié à la thérapie cellulaire pour le diabète auto-immun.