218 resultados para INNERVATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In view of the relevance of the mylohyoid nerve to clinical difficulties in achieving deep analgesia of the lower incisors, a dissection study was undertaken. Dissections from 29 adult cadavers of both sexes were studied with the aid of a dissecting microscope. The following observations were made: a supplementary branch of the mylohyoid nerve entered the mandible through accessory foramina in the lingual side of the mandibular symphysis in 50% of the cases; it generrally arose from the right side (76.9%) and entered the inferior retromental foramen (84.6%); the mylohyoid nerve branch either ended directly in the incisor teeth and the gingiva or joined the ipsilateral or contralateral incisive nerve. In view of this information concerning the high incidence of possible involvement of the mylohyoid nerve in mandibular sensory innervation, it is advisable to block it whenever intervention in the lower incisors is indicated. Routine mylohyoid injection is recommended after mental nerve block. If the inferior alveolar nerve is chosen for anesthetic purposes, additional mylohyoid injection should be given only if pain persists. The mylohyoid injection should be given at the inferior retromental foramen on the median aspect of the inferior border of the mandible through extraoral approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: We evaluated the somatic and autonomic innervation of the pelvic floor and rhabdosphincter before and after nerve sparing radical retropubic prostatectomy using neurophysiological tests and correlated findings with clinical parameters and urinary continence. Materials and Methods: From February 2003 to October 2005, 46 patients with prostate cancer were enrolled in a controlled, prospective study. Patients were evaluated before and 6 months after nerve sparing radical retropubic prostatectomy using the UCLA-PCI urinary function domain and neurophysiological tests, including somatosensory evoked potential, and the pudendo-urethral, pudendo-anal and urethro-anal reflexes. Clinical parameters and urinary continence were correlated with afferent and efferent innervation of the membranous urethra and pelvic floor. We used strict criteria to define urinary continence as complete dryness with no leakage at all, not requiring any pads or diapers and with a UCLA-PCI score of 500. Patients with a sporadic drop of leakage, requiring up to 1 pad daily, were defined as having occasional urinary leakage. Results: Two patients were excluded from study due to urethral stricture postoperatively. We evaluated 44 patients within 6 months after surgery. The pudendo-anal and pudendo-urethral reflexes were unchanged postoperatively (p = 0.93 and 0.09, respectively), demonstrating that afferent and efferent pudendal innervation to this pelvic region was not affected by the surgery. Autonomic afferent denervation of the membranous urethral mucosa was found in 34 patients (77.3%), as demonstrated by a postoperative increase in the urethro-anal reflex sensory threshold and urethro-anal reflex latency (p <0.001 and 0.0007, respectively). Six of the 44 patients used pads. One patient with more severe leakage required 3 pads daily and 23 showed urinary leakage, including 5 who needed 1 pad per day and 18 who did not wear pads. Afferent autonomic denervation at the membranous urethral mucosa was found in 91.7% of patients with urinary leakage. Of 10 patients with preserved urethro-anal reflex latency 80% were continent. Conclusions: Sensory and motor pudendal innervation to this specific pelvic region did not change after nerve sparing radical retropubic prostatectomy. Significant autonomic afferent denervation of the membranous urethral mucosa was present in most patients postoperatively. Impaired membranous urethral sensitivity seemed to be associated with urinary incontinence, particularly in patients with occasional urinary leakage. Damage to the afferent autonomic innervation may have a role in the continence mechanism after nerve sparing radical retropubic prostatectomy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe an angiotensin (Ang) II-containing innervation of the kidney. Cryosections of rat, pig and human kidneys were investigated for the presence of Ang II-containing nerve fibers using a mouse monoclonal antibody against Ang II (4B3). Co-staining was performed with antibodies against synaptophysin, tyrosine 3-hydroxylase, and dopamine beta-hydroxylase to detect catecholaminergic efferent fibers and against calcitonin gene-related peptide to detect sensory fibers. Tagged secondary antibodies and confocal light or laser scanning microscopy were used for immunofluorescence detection. Ang II-containing nerve fibers were densely present in the renal pelvis, the subepithelial layer of the urothelium, the arterial nervous plexus, and the peritubular interstitium of the cortex and outer medulla. They were infrequent in central veins and the renal capsule and absent within glomeruli and the renal papilla. Ang II-positive fibers represented phenotypic subgroups of catecholaminergic postganglionic or sensory fibers with different morphology and intrarenal distribution compared to their Ang II-negative counterparts. The Ang II-positive postganglionic fibers were thicker, produced typically fusiform varicosities and preferentially innervated the outer medulla and periglomerular arterioles. Ang II-negative sensory fibers were highly varicose, prevailing in the pelvis and scarce in the renal periphery compared to the rarely varicose Ang II-positive fibers. Neurons within renal microganglia displayed angiotensinergic, catecholaminergic, or combined phenotypes. Our results suggest that autonomic fibers may be an independent source of intrarenal Ang II acting as a neuropeptide co-transmitter or neuromodulator. The angiotensinergic renal innervation may play a distinct role in the neuronal control of renal sodium reabsorption, vasomotion and renin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low back pain is a common ailment in dogs, particularly in specific breeds such as the German shepherd dog. A number of structures such as facet joint capsules, ligaments, dorsal root ganglia, periosteum, vertebral endplates and meninges have been associated with this condition. Yet, in spite of all diagnostic efforts, the origin of pain remains obscure in a substantial proportion of all cases. A further structure often being involved in vertebral column disorders is the intervertebral disc. The presence of nerves, however, is a precondition for pain sensation and, consequently, structures lacking innervation can be left out of consideration as a cause for low back pain. Nerve fibres have been demonstrated at the periphery of the intervertebral disc in man, rabbit and rat. With regard to the dog, however, the extent of intervertebral disc innervation is still being disputed. The goal of the present study, therefore, was to substantiate and expand current knowledge of intervertebral disc innervation. Protein gene product (PGP) 9.5 was used for immunohistochemical examination of serial transversal and sagittal paraffin sections of lumbar discs from adult dogs. This general marker revealed nerve fibres to be confined to the periphery of the intervertebral discs. These results indicate that even limited pathological processes affecting the outer layers of the intervertebral disc are prone to cause low back pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although intervertebral disc herniation is a well-known disease in dogs, pain management for this condition has remained a challenge. The goal of the present study is to address the lack of information regarding the innervation of anatomical structures within the canine vertebral canal. Immunolabeling was performed with antibodies against protein gene product 9.5, Tuj-1 (neuron-specific class III β-tubulin), calcitonin gene-related peptide, and neuropeptide Y in combination with the lectin from Lycopersicon esculentum as a marker for blood vessels. Staining was indicative of both sensory and sympathetic fibers. Innervation density was the highest in lateral areas, intermediate in dorsal areas, and the lowest in ventral areas. In the dorsal longitudinal ligament (DLL), the highest innervation density was observed in the lateral regions. Innervation was lower at mid-vertebral levels than at intervertebral levels. The presence of sensory and sympathetic fibers in the canine dura and DLL suggests that pain may originate from both these structures. Due to these regional differences in sensory innervation patterns, trauma to intervertebral DLL and lateral dura is expected to be particularly painful. The results ought to provide a better basis for the assessment of medicinal and surgical procedures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To systematically review the available literature on the influence of dental implant placement and loading protocols on peri-implant innervation. MATERIAL AND METHODS The database MEDLINE, Cochrane, EMBASE, Web of Science, LILACS, OpenGrey and hand searching were used to identify the studies published up to July 2013, with a populations, exposures and outcomes (PEO) search strategy using MeSH keywords, focusing on the question: Is there, and if so, what is the effect of time between tooth extraction and implant placement or implant loading on neural fibre content in the peri-implant hard and soft tissues? RESULTS Of 683 titles retrieved based on the standardized search strategy, only 10 articles fulfilled the inclusion criteria, five evaluating the innervation of peri-implant epithelium, five elucidating the sensory function in peri-implant bone. Three included studies were considered having a methodology of medium quality and the rest were at low quality. All those papers reported a sensory innervation around osseointegrated implants, either in the bone-implant interface or peri-implant epithelium, which expressed a particular innervation pattern. Compared to unloaded implants or extraction sites without implantation, a significant higher density of nerve fibres around loaded dental implants was confirmed. CONCLUSIONS To date, the published literature describes peri-implant innervation with a distinct pattern in hard and soft tissues. Implant loading seems to increase the density of nerve fibres in peri-implant tissues, with insufficient evidence to distinguish between the innervation patterns following immediate and delayed implant placement and loading protocols. Variability in study design and loading protocols across the literature and a high risk of bias in the studies included may contribute to this inconsistency, revealing the need for more uniformity in reporting, randomized controlled trials, longer observation periods and standardization of protocols.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Activation of the sympathetic nervous system (SNS) in response to chronic biobehavioral stress results in high levels of catecholamines and persistent activation of adrenergic signaling, which promotes tumor growth and progression. However it is unknown how catecholamine levels within the tumor exceed systemic levels in circulation. I hypothesized that neo-innervation of tumors is required for stress-mediated effects on tumor growth. Results: First, I examined whether sympathetic nerves are present in human ovarian cancer samples as well as orthotopic ovarian cancer models. Immunohistochemical (IHC) staining for neurofilament revealed that catecholaminergic neurons are present within tumor tissue. In order to determine whether chronic stress affects the density of nerves in the tumor, I utilized an orthotopic mouse model of ovarian cancer that was exposed to daily restraint stress. IHC analysis revealed that nerve density in tumors increased by more than three-fold in stressed animals versus non-stressed controls. IHC analysis suggested that this results from both recruitment of existing neurons (axonogenesis) as well as new neuron formation (neurogenesis) within the tumor. To determine how tumors are recruiting nerve growth, I utilized a PCR array analysis of 84 nerve growth related genes and their receptors, which showed that stimulation of the SKOV3 ovarian cancer cell line with norepinephrine (NE) leads to increased expression of several neurotrophins, including brain-derived neurotrophic factor (BDNF). Neurite extension assays showed that media conditioned by ovarian cancer cell lines is capable of inducing neurite outgrowth in differentiated neuron-like PC12 cells, and NE treatment of cancer cells potentiates this effect. Norepinephrine-induced neurite extension was abolished after BDNF silencing by siRNA, suggesting that BDNF is critical to tumor cell-induced nerve growth. in vivo BDNF inhibition resulted in complete abrogation of stress-induced increases in tumor weight and nerve density, as well as downstream markers of stress. Discussion: These studies indicate that adrenergic signalling induced by chronic stress promotes neo-innervation in the tumor microenvironment. This results in a mutually beneficial relationship between the tumor cells and neurons. This work is crucial for providing a link between chronic stress and its effects on the tumor and its microenvironment. The data shown here aims to open new venues that can be used in development of therapies designed to block the stress effects on tumor growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mice lacking the α-subunit of the heterotrimeric guanine nucleotide binding protein Gq (Gαq) are viable but suffer from ataxia with typical signs of motor discoordination. The anatomy of the cerebellum is not overtly disturbed, and excitatory synaptic transmission from parallel fibers to cerebellar Purkinje cells (PCs) and from climbing fibers (CFs) to PCs is functional. However, about 40% of adult Gαq mutant PCs remain multiply innervated by CFs because of a defect in regression of supernumerary CFs in the third postnatal week. Evidence is provided suggesting that Gαq is part of a signaling pathway that is involved in the elimination of multiple CF innervation during this period.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal aging is associated with a significant reduction in cognitive function across primate species. However, the structural and molecular basis for this age-related decline in neural function has yet to be defined clearly. Extensive cell loss does not occur as a consequence of normal aging in human and nonhuman primate species. More recent studies have demonstrated significant reductions in functional neuronal markers in subcortical brain regions in primates as a consequence of aging, including dopaminergic and cholinergic systems, although corresponding losses in cortical innervation from these neurons have not been investigated. In the present study, we report that aging is associated with a significant 25% reduction in cortical innervation by cholinergic systems in rhesus monkeys (P < 0.001). Further, these age-related reductions are ameliorated by cellular delivery of human nerve growth factor to cholinergic somata in the basal forebrain, restoring levels of cholinergic innervation in the cortex to those of young monkeys (P = 0.89). Thus, (i) aging is associated with a significant reduction in cortical cholinergic innervation; (ii) this reduction is reversible by growth-factor delivery; and (iii) growth factors can remodel axonal terminal fields at a distance, representing a nontropic action of growth factors in modulating adult neuronal structure and function (i.e., administration of growth factors to cholinergic somata significantly increases axon density in terminal fields). These findings are relevant to potential clinical uses of growth factors to treat neurological disorders.