884 resultados para INFRARED-SPECTRUM


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular dynamics simulations of the photodissociated state of carbonmonoxy myoglobin (MbCO) are presented using a fluctuating charge model for CO. A new three-point charge model is fitted to high-level ab initio calculations of the dipole and quadrupole moment functions taken from the literature. The infrared spectrum of the CO molecule in the heme pocket is calculated using the dipole moment time autocorrelation function and shows good agreement with experiment. In particular, the new model reproduces the experimentally observed splitting of the CO absorption spectrum. The splitting of 3–7 cm−1 (compared to the experimental value of 10 cm−1) can be directly attributed to the two possible orientations of CO within the docking site at the edge of the distal heme pocket (the B states), as previously suggested on the basis of experimental femtosecond time-resolved infrared studies. Further information on the time evolution of the position and orientation of the CO molecule is obtained and analyzed. The calculated difference in the free energy between the two possible orientations (Fe···CO and Fe···OC) is 0.3 kcal mol−1 and agrees well with the experimentally estimated value of 0.29 kcal mol−1. A comparison of the new fluctuating charge model with an established fixed charge model reveals some differences that may be critical for the correct prediction of the infrared spectrum and energy barriers. The photodissociation of CO from the myoglobin mutant L29F using the new model shows rapid escape of CO from the distal heme pocket, in good agreement with recent experimental data. The effect of the protein environment on the multipole moments of the CO ligand is investigated and taken into account in a refined model. Molecular dynamics simulations with this refined model are in agreement with the calculations based on the gas-phase model. However, it is demonstrated that even small changes in the electrostatics of CO alter the details of the dynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Synthesis, infrared spectroscopy and crystal structure of a new potassium decavanadate decahydrate, K(6)[V(10)O(28)] 10H(2)O, has been reported The infrared spectrum is dominated by decavanadate polyanion and water bands The X-ray crystallography analysis found the compound crystallizes in a triclinic system with the parameters a = 10 5334 (4) angstrom, b = 10 6600 (4) angstrom, c = 17 7351 (5) angstrom, alpha = 76 940 (2)degrees, beta = 75 836 (2)degrees, gamma = 64 776 (2)degrees, V = 1,729 86 (11) A(3), Z = 2, space group P (1) over bar The polyanion consists of ten [VO(6)] octahedra sharing edges, in which the V-O distances are in good agreement with those reported for other decavanadates The crystal structure is stabilized by potassium cations and water molecules forming a complex pattern of hydrogen bonding and short contact ionic interactions

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new ''Ritz'' program has been used for revising and expanding the assignment of the Fourier transform infrared and far-infrared spectrum of CH3OH. This program evaluates the energy levels involved in the assigned transitions by the Rydberg-Ritz combination principle and can tackle such perturbations as Fermi-type resonances or Coriolis interactions. Up to now this program has evaluated the energies of 2768 levels belonging to A-type symmetry and 4133 levels belonging to E-type symmetry of CH3OH. Here we present the assignment of almost 9600 lines between 350 and 950 cm(-1). The Taylor expansion coefficients for evaluating the energies of the levels involved in the transitions are also given. All of the lines presented in this paper correspond to transitions involving torsionally excited levels within the ground vibrational state. (C) 1995 Academic Press, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The CaSnO3 perovskite is investigated under geochemical pressure, up to 25 GPa, by means of periodic ab initio calculations performed at B3LYP level with local Gaussian-type orbital basis sets. Structural, elastic, and spectroscopic (phonon wave-numbers, infrared and Raman intensities) properties are fully characterized and discussed. The evolution of the Raman spectrum of CaSnO3 under pressure is reported to remarkably agree with a recent experimental determination [J. Kung, Y. J. Lin, and C. M. Lin, J. Chem. Phys. 135, 224507 (2011)] as regards both wave-number shifts and intensity changes. All phonon modes are symmetry-labeled and bands assigned. The single-crystal total spectrum is symmetry-decomposed into the six directional spectra related to the components of the polarizability tensor. The infrared spectrum at increasing pressure is reported for the first time and its main features discussed. All calculations are performed using the CRYSTAL14 program, taking advantage of the new implementation of analytical infrared and Raman intensities for crystalline materials. (C) 2015 AIP Publishing LLC.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

So far, no experimental data of the infrared and Raman spectra of 13C isotopologue of dimethyl ether are available. With the aim of providing some clues of its low-lying vibrational bands and with the hope of contributing in a next spectral analysis, a number of vibrational transition frequencies below 300 cm−1 of the infrared spectrum and around 400 cm−1 of the Raman spectrum have been predicted and their assignments were proposed. Calculations were carried out through an ab initio three dimensional potential energy surface based on a previously reported one for the most abundant dimethyl ether isotopologue (M. Villa et al., J. Phys. Chem. A 115 (2011) 13573). The potential function was vibrationally corrected and computed with a highly correlated CCSD(T) method involving the COC bending angle and the two large amplitude CH3 internal rotation degrees of freedom. Also, the Hamiltonian parameters could represent a support for the spectral characterization of this species. Although the computed vibrational term values are expected to be very accurate, an empirical adjustment of the Hamiltonian has been performed with the purpose of anticipating some workable corrections to any possible divergence of the vibrational frequencies. Also, the symmetry breaking derived from the isotopic substitution of 13C in the dimethyl ether was taken into account when the symmetrization procedure was applied.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Highly correlated ab initio calculations (CCSD(T)) are used to compute gas phase spectroscopic parameters of three isotopologues of the methyl acetate (CH3COOCH3, CD3COOCH3, and CH3COOCD3), searching to help experimental assignments and astrophysical detections. The molecule shows two conformers cis and trans separated by a barrier of 4457 cm−1. The potential energy surface presents 18 minima that intertransform through three internal rotation motions. To analyze the far infrared spectrum at low temperatures, a three-dimensional Hamiltonian is solved variationally. The two methyl torsion barriers are calculated to be 99.2 cm−1 (C–CH3) and 413.1 cm−1 (O–CH3), for the cis-conformer. The three fundamental torsional band centers of CH3COOCH3 are predicted to lie at 63.7 cm−1 (C–CH3), 136.1 cm−1 (O–CH3), and 175.8 cm−1 (C–O torsion) providing torsional state separations. For the 27 vibrational modes, anharmonic fundamentals and rovibrational parameters are provided. Computed parameters are compared with those fitted using experimental data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Context. We report the infrared identification of the X-ray source 2XMM J191043.4+091629.4, which was detected by XMM-Newton/EPIC in the vicinity of the Galactic supernova remnant W49B. Aims. The aim of this work is to establish the nature of the X-ray source 2XMM J191043.4+091629.4 studying both the infrared photometry and spectroscopy of the companion. Methods. We analysed UKIDSS images around the best position of the X-ray source and obtained spectra of the best candidate using NICS in the Telescopio Nazionale Galileo (TNG) 3.5-m telescope. We present photometric and spectroscopic TNG analyses of the infrared counterpart of the X-ray source, identifying emission lines in the K-band. The H-band spectra does not present any significant feature. Results. We have shown that the Brackett γ H i at 2.165 μm, and He i at 2.184 μm and at 2.058 μm are significantly present in the infrared spectrum. The CO bands are also absent from our spectrum. Based on these results and the X-ray characteristics of the source, we conclude that the infrared counterpart is an early B-type supergiant star with an E(B − V) = 7.6 ± 0.3 at a distance of 16.0 ± 0.5 kpc. This would be, therefore, the first high-mass X-ray binary in the Outer Arm at galactic longitudes of between 30° and 60°.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

B3LYP/6-31G(d) calculations of structures, energies, and infrared spectra of several rearrangement products of (hetero)aromatic nitrenes and carbenes are reported. 3-Isoquinolylnitrene 36 ring closes to the azirine 37 prior to ring expansion to the potentially stable but unobserved seven-membered-ring carbodiimide 38 and diazacycloheptatrienylidene C-s-39S. A new, stable cycloheptatrienylidene, C-s-19S, is located on the naphthylcarbene energy surface. 4-Quinolylnitrene undergoes reaction via the azirine 50 in solution, but ring expansion to the stable seven-membered-ring ketenimine 47 under Ar matrix photolysis conditions. There is excellent agreement between calculated infrared spectra of 1,5-diazacyclohepta-1,2,4,6-tetraene 54 (obtained by photolysis of 4-pyridyl azide), 1-azacyclohepta-1,2,4,6-tetraene 5, 1-azacyclohepta-1,3,5,6-tetraene 55, and 1-azacyclohepta-1,3,4,6-tetraene 56 and the available experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flash vacuum thermolysis of quinolizinones is a new way of generating ketenes. The title ketene is obtained from 1-cyano-2-hydroxyquinolizine-4-one and characterized by its Ar matrix infrared spectrum. (C) Wiley-VCH Verlag GmbH, 69451 Weinheim, Germany 2002.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: Dissection during laparoscopic surgery produces smoke containing potentially toxic substances. The aim of the present study was to analyze smoke samples produced during laparoscopic colon surgery using a bipolar vessel sealing device (LigaSuretrade mark). METHODS: Four consecutive patients undergoing left-sided colectomy were enrolled in this pilot study. Smoke was produced by the use of LigaSuretrade mark. Samples (5,5l) were evacuated from the pneumoperitoneum in a closed system into a reservoir. Analysis was performed with CO2-laser-based photoacoustic spectroscopy and confirmed by a Fourier-transform infrared spectrum. The detected spectra were compared to the available spectra of known toxins. RESULTS: Samples from four laparoscopic sigmoid resections were analyzed. No relevant differences were noted regarding patient and operation characteristics. The gas samples were stable over time proven by congruent control measurements as late as 24 h after sampling. The absorption spectra differed considerably between the patients. One broad absorption line at 100 ppm indicating H2O and several unknown molecules were detected. With a sensitivity of alpha min ca 10-5 cm-1 no known toxic substances like phenol or indole were identified. CONCLUSION: The use of a vessel sealing device during laparoscopic surgery does not produce known toxic substances in relevant quantity. Further studies are needed to identify unknown molecules and to analyze gas emission under various conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of the nongray absorption (i.e., atmospheric opacity varying with wavelength) on the possible upper bound of the outgoing longwave radiation (OLR) emitted by a planetary atmosphere have been examined. This analysis is based on the semigray approach, which appears to be a reasonable compromise between the complexity of nongray models and the simplicity of the gray assumption (i.e., atmospheric absorption independent of wavelength). Atmospheric gases in semigray atmospheres make use of constant absorption coefficients in finite-width spectral bands. Here, such a semigray absorption is introduced in a one-dimensional (1D) radiative– convective model with a stratosphere in radiative equilibrium and a troposphere fully saturated with water vapor, which is the semigray gas. A single atmospheric window in the infrared spectrum has been assumed. In contrast to the single absolute limit of OLR found in gray atmospheres, semigray ones may also show a relative limit. This means that both finite and infinite runaway effects may arise in some semigray cases. Of particular importance is the finding of an entirely new branch of stable steady states that does not appear in gray atmospheres. This new multiple equilibrium is a consequence of the nongray absorption only. It is suspected that this new set of stable solutions has not been previously revealed in analyses of radiative–convective models since it does not appear for an atmosphere with nongray parameters similar to those for the earth’s current state