955 resultados para INDIUM-OXIDE NANOPARTICLES
Resumo:
Tin-oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800°C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.
Resumo:
Nanoparticles (NPs) are in clinical use or under development for therapeutic imaging and drug delivery. However, relatively little information exists concerning the uptake and transport of NPs across human colon cell layers, or their potential to invade three-dimensional models of human colon cells that better mimic the tissue structures of normal and tumoral colon. In order to gain such information, the interactions of biocompatible ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) (iron oxide core 9-10 nm) coated with either cationic polyvinylamine (aminoPVA) or anionic oleic acid with human HT-29 and Caco-2 colon cells was determined. The uptake of the cationic USPIO NPs was much higher than the uptake of the anionic USPIO NPs. The intracellular localization of aminoPVA USPIO NPs was confirmed in HT-29 cells by transmission electron microscopy that detected the iron oxide core. AminoPVA USPIO NPs invaded three-dimensional spheroids of both HT-29 and Caco-2 cells, whereas oleic acid-coated USPIO NPs could only invade Caco-2 spheroids. Neither cationic aminoPVA USPIO NPs nor anionic oleic acid-coated USPIO NPs were transported at detectable levels across the tight CacoReady? intestinal barrier model or the more permeable mucus-secreting CacoGoblet? model.
Resumo:
We report the results of magnetization and 57Fe Mössbauer spectroscopy measurements performed in the temperature range 5-300 K on composites containing iron¿oxide nanoparticles encased in polystyrene type resins. After carrying out a suitable field treatment in order to decouple the particles from the matrix, a fraction of the particles freely rotate in response to an applied magnetic field
Resumo:
Aim: Ultrasmall superparamagnetic iron oxide nanoparticles (USPIO-NPs) are under development for imaging and drug delivery; however, their interaction with human blood-brain barrier models is not known. Materials & Methods: The uptake, reactive oxygen species production and transport of USPIO-NPs across human brain-derived endothelial cells as models of the blood-brain tumor barrier were evaluated for either uncoated, oleic acid-coated or polyvinylamine-coated USPIO-NPs. Results: Reactive oxygen species production was observed for oleic acid-coated and polyvinylamine-coated USPIO-NPs. The uptake and intracellular localization of the iron oxide core of the USPIO-NPs was confirmed by transmission electron microscopy. However, while the uptake of these USPIO-NPs by cells was observed, they were neither released by nor transported across these cells even in the presence of an external dynamic magnetic field. Conclusion: USPIO-NP-loaded filopodia were observed to invade the polyester membrane, suggesting that they can be transported by migrating angiogenic brain-derived endothelial cells.
Resumo:
The performance of magnetic nanoparticles is intimately entwined with their structure, mean size and magnetic anisotropy. Besides, ensembles offer a unique way of engineering the magnetic response by modifying the strength of the dipolar interactions between particles. Here we report on an experimental and theoretical analysis of magnetic hyperthermia, a rapidly developing technique in medical research and oncology. Experimentally, we demonstrate that single-domain cubic iron oxide particles resembling bacterial magnetosomes have superior magnetic heating efficiency compared to spherical particles of similar sizes. Monte Carlo simulations at the atomic level corroborate the larger anisotropy of the cubic particles in comparison with the spherical ones, thus evidencing the beneficial role of surface anisotropy in the improved heating power. Moreover we establish a quantitative link between the particle assembling, the interactions and the heating properties. This knowledge opens new perspectives for improved hyperthermia, an alternative to conventional cancer therapies.
Resumo:
Therapeutic engineered nanoparticles (NPs), including ultrasmall superparamagnetic iron oxide (USPIO) NPs, may accumulate in the lower digestive tract following ingestion or injection. In order to evaluate the reaction of human colon cells to USPIO NPs, the effects of non-stabilized USPIO NPs (NS-USPIO NPs), oleic-acid-stabilized USPIO NPs (OA-USPIO NPs), and free oleic acid (OA) were compared in human HT29 and CaCo2 colon epithelial cancer cells. First the biophysical characteristics of NS-USPIO NPs and OA-USPIO NPs in water, in cell culture medium supplemented with fetal calf serum, and in cell culture medium preconditioned by HT29 and CaCo₂ cells were determined. Then, stress responses of the cells were evaluated following exposure to NS-USPIO NPs, OA-USPIO NPs, and free OA. No modification of the cytoskeletal actin network was observed. Cell response to stress, including markers of apoptosis and DNA repair, oxidative stress and degradative/autophagic stress, induction of heat shock protein, or lipid metabolism was determined in cells exposed to the two NPs. Induction of an autophagic response was observed in the two cell lines for both NPs but not free OA, while the other stress responses were cell- and NP-specific. The formation of lipid vacuoles/droplets was demonstrated in HT29 and CaCo₂ cells exposed to OA-USPIO NPs but not to NS-USPIO NPs, and to a much lower level in cells exposed to equimolar concentrations of free OA. Therefore, the induction of lipid vacuoles in colon cells exposed to OA utilized as a stabilizer for USPIO NPs is higly amplified compared to free OA, and is not observed in the absence of this lipid in NS-USPIO NPs.
Resumo:
Abstract Background: Aerosol-mediated delivery of nano-based therapeutics to the lung has emerged as a promising alternative for treatment and prevention of lung diseases. Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted significant attention for such applications due to their biocompatibility and magnetic properties. However, information is lacking about the characteristics of nebulized SPIONs for use as a therapeutic aerosol. To address this need, we conducted a physicochemical characterization of nebulized Rienso, a SPION-based formulation for intravenous treatment of anemia. Methods: Four different concentrations of SPION suspensions were nebulized with a one-jet nebulizer. Particle size was measured in suspension by transmission electron microscopy (TEM), photon correlation spectroscopy (PCS), and nanoparticle tracking analysis (NTA), and in the aerosol by a scanning mobility particle sizer (SMPS). Results: The average particle size in suspension as measured by TEM, PCS, and NTA was 9±2 nm, 27±7 nm, and 56±10 nm, respectively. The particle size in suspension remained the same before and after the nebulization process. However, after aerosol collection in an impinger, the suspended particle size increased to 159±46 nm as measured by NTA. The aerosol particle concentration increased linearly with increasing suspension concentration, and the aerodynamic diameter remained relatively stable at around 75 nm as measured by SMPS. Conclusions: We demonstrated that the total number and particle size in the aerosol were modulated as a function of the initial concentration in the nebulizer. The data obtained mark the first known independent characterization of nebulized Rienso and, as such, provide critical information on the behavior of Rienso nanoparticles in an aerosol. The data obtained in this study add new knowledge to the existing body of literature on potential applications of SPION suspensions as inhaled aerosol therapeutics.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Al2O3 is the most abundantly produced nanomaterial and has been used in diverse fields, including the medical, military and industrial sectors. As there are concerns about the health effects of nanoparticles, it is important to understand how they interact with cells, and specifically with red blood cells. The hemolysis induced by three commercial nano-sized aluminum oxide particles (nanopowder 13 nm, nanopowder <50 nm and nanowire 2-6 nm × 200-400 nm) was compared to aluminum oxide and has been studied on erythrocytes from humans, rats and rabbits, in order to elucidate the mechanism of action and the influence of size and shape on hemolytic behavior. The concentrations inducing 50% hemolysis (HC50) were calculated for each compound studied. The most hemolytic aluminum oxide particles were of nanopowder 13, followed by nanowire and nanopowder 50. The addition of albumin to PBS induced a protective effect on hemolysis in all the nano-forms of Al2O3, but not on Al2O3. The drop in HC50 correlated to a decrease in nanomaterial size, which was induced by a reduction of aggregation Aluminum oxide nanoparticles are less hemolytic than other oxide nanoparticles, and behave differently depending on the size and shape of the nanoparticles. The hemolytic behavior of aluminum oxide nanoparticles differs from that of aluminum oxide.
Resumo:
Praseodymium oxide as a thin film of controllable layer is known to display many unique physiochemical properties, which can be useful to ceramic, semiconductive and sensor industries. Here in this short paper, we describe a new chemical method of depositing praseodymium oxide on tin-doped indium oxide (ITO) surface using a layer-by-layer approach. The process is carried out by dipping the ITO in solutions of adsorbable polycationic chitosan and alkaline praseodymium hydroxide Pr(OH)(3) alternatively in order to build up the well-defined multi-layers. XRD suggests that the predominant form of the oxide is Pr6O11, obtained after heat treatment of the deposited ITO in static air at 500 degrees C. Microscopic studies including AFM, TEM and SEM indicate that the deposited oxide particles are uniform in size and shape (cylindrical), mesoporous and the thickness of the film can be controlled. AC impedance measurements of the deposited materials also reveal that the oxide layers display a high electrical conductivity hence suitable for sensor uses. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, we present the synthesis and characterization of a hybrid nanocomposite constituted by iron oxide nanoparticles and vanadium oxide/Hexadecylamine (VO(x)/Hexa) nanotubes. Transmission Electron Microscopy (TEM) images show small particles (around 20 nm) in contact with the external wall of the multiwall tubes, which consist of alternate layers of VO(x) and Hexa. By Energy Dispersive Spectroscopy (EDS), we detected iron ions within the tube walls and we have also established that the nanoparticles are composed of segregated iron oxide. The samples were studied by Electron Paramagnetic Resonances (EPR) and dc-magnetization as a function of the magnetic field. The analysis of the magnetization and EPR data confirms that a fraction of the V atoms are in the V(4+) electronic state and that the nanoparticles exhibit a superparamagnetic behavior. The percentage of V and Fe present in the nanocomposite was determined using Instrumental Neutron Activation Analysis (INAA). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)