369 resultados para INBREEDING
Resumo:
The objective of this study was to assess breeding and dispersal patterns of both males and females in a monogyne (a single queen per colony) population of ants. Monogyny is commonly associated with extensive nuptial flights, presumably leading to considerable gene flow over large areas. Opposite to these expectations we found evidence of both inbreeding and sex-biased gene flow in a monogyne population of Formica exsecta. We found a significant degree of population subdivision at a local scale (within islands) for queens (females heading established colonies) and workers, but not for colony fathers (the males mated to the colony queens). However, we found little evidence of population subdivision at a larger scale (among islands). More conclusive support for sex-biased gene flow comes from the analysis of isolation by distance on the largest island, and from assignment tests revealing differences in female and male philopatry. The genetic similarity between pairs of queens decreased significantly when geographical distance increased, demonstrating limited dispersal and isolation by distance in queens. By contrast, we found no such pattern for colony fathers. Furthermore, a significantly greater fraction of colony queens were assigned as having originated from the population of residence, as compared to colony fathers. Inbreeding coefficients were significantly positive for workers, but not for mother queens. The queen-male relatedness coefficient of 0.23 (regression relatedness) indicates that mating occurs between fairly close relatives. These results suggest that some monogyne species of ants have complex dispersal and mating systems that can result in genetic isolation by distance over small geographical scales. More generally, this study also highlights the importance of identifying the relevant scale in analyses of population structure and dispersal.
Resumo:
To test whether quantitative traits are under directional or homogenizing selection, it is common practice to compare population differentiation estimates at molecular markers (F(ST)) and quantitative traits (Q(ST)). If the trait is neutral and its determinism is additive, then theory predicts that Q(ST) = F(ST), while Q(ST) > F(ST) is predicted under directional selection for different local optima, and Q(ST) < F(ST) is predicted under homogenizing selection. However, nonadditive effects can alter these predictions. Here, we investigate the influence of dominance on the relation between Q(ST) and F(ST) for neutral traits. Using analytical results and computer simulations, we show that dominance generally deflates Q(ST) relative to F(ST). Under inbreeding, the effect of dominance vanishes, and we show that for selfing species, a better estimate of Q(ST) is obtained from selfed families than from half-sib families. We also compare several sampling designs and find that it is always best to sample many populations (>20) with few families (five) rather than few populations with many families. Provided that estimates of Q(ST) are derived from individuals originating from many populations, we conclude that the pattern Q(ST) > F(ST), and hence the inference of directional selection for different local optima, is robust to the effect of nonadditive gene actions.
Resumo:
Inbreeding avoidance is often invoked to explain observed patterns of dispersal, and theoretical models indeed point to a possibly important role. However, while inbreeding load is usually assumed constant in these models, it is actually bound to vary dynamically under the combined influences of mutation, drift, and selection and thus to evolve jointly with dispersal. Here we report the results of individual-based stochastic simulations allowing such a joint evolution. We show that strongly deleterious mutations should play no significant role, owing to the low genomic mutation rate for such mutations. Mildly deleterious mutations, by contrast, may create enough heterosis to affect the evolution of dispersal as an inbreeding-avoidance mechanism, but only provided that they are also strongly recessive. If slightly recessive, they will spread among demes and accumulate at the metapopulation level, thus contributing to mutational load, but not to heterosis. The resulting loss of viability may then combine with demographic stochasticity to promote population fluctuations, which foster indirect incentives for dispersal. Our simulations suggest that, under biologically realistic parameter values, deleterious mutations have a limited impact on the evolution of dispersal, which on average exceeds by only one-third the values expected from kin-competition avoidance.
Resumo:
Summary Gynodioecy, the joint occurrence of females and hermaphrodites within natural populations, is a widely studied mating system ever since Darwin (1877). It is an exceptional mating system because continuous selection is necessary to maintain it. Since females only reproduce through ovules whereas hermaphrodites transmit genes through ovules and pollen, larger female fitness, in terms of seed output, is required to allow their maintenance. Two non-exclusive mechanisms can account for the maintenance of females. First, as females do not produce pollen they can reallocate their resources towards a higher ovule production. Second, hermaphrodites can self- and cross-fertilize whereas females are obligate outcrossers. Thus hermaphrodites should partly suffer from inbreeding depression (i.e.: the fitness decline of inbred relative to outbred individuals) and thereby produce less fit progeny than females. This thesis investigated the effects of self- and cross-fertilization of heimaphrodites over two consecutive generations. Inbreeding depression increased across the successive stages of the life- cycle (i.e.: from "seed traits" to "reproductive traits") displaying large inbreeding depression estimates (up to 0.76). This investigation not only detected large inbreeding depression estimates but also detected mechanisms involved in the maintenance of inbreeding depression. For instance cryptic self-incompatibility which is here a larger in vivo pollen performance of distant pollen compared to self-pollen; the expression of inbreeding depression especially in late life-cycle stages, and the appearance of females in the progeny of selfed hermaphrodites. The female biased sex ratio in the progeny of selfed hermaphrodites was a surprising result and could either come from the sex determining mechanisms (complex nucleo-cytoplasmic interaction(s)) and/or from inbreeding depression. Indeed, we not only got females and hermaphrodites but also partial male-sterile (PMS) individuals (i.e.: individuals with differing number of viable stamens). We detected that inbred pollen bearing plants (excluding females) have less viable stamens per flower than outbred plants. A positive correlation was detected between inbreeding depression for the number of viable stamens per flower and the difference in sex ratio between inbred and outbred individuals. A positive relationship was also detected between inbreeding depression for pollen viability and inbreeding depression for number of viable stamens per flower. Each correlation can either account for pleiotropic effects (a major gene acting on the two considered traits) or linkage disequilibrium between genes controlling each of the two related traits. If we hypothesize that these correlations are due to a major gene with pleiotropic effects, the positive relationship between inbreeding depression for number of viable stamens per flower and inbreeding depression for pollen viability showed that deleterious alleles present on a major gene coding for pollen production and viability depressed male fitness within inbred plants. The positive relationship between sex ratio difference between inbred and outbred individuals and inbreeding depression for number of viable stamens per flower indicates that (1) either number of viable stamens per flower is, in addition to inbreeding, also affected by the loci coding for sex determinism or, (2) the presence of females within the progeny of selfed hermaphrodites is a consequence of large inbreeding depression inhibiting pollen production, or (3) sex is here determined by a combination of loci coding for sex expression and inbreeding depression for male reproductive traits. In conclusion, Silene vulgaris has been shown to be a good model for understanding the evolution of mating systems that promote outbreeding. Résumé La gynodïoécie est définie comme étant la présence simultanée d'hermaphrodites et de femelles au sein de populations naturelles d'une même espèce. Ce système de reproduction a toujours fasciné le monde scientifique depuis Darwin, comme en témoigne ses écrits (1876, 1877) sur les systèmes de reproduction chez les plantes. Les femelles ne transmettent leurs gènes qu'à travers leurs ovules alors que les hermaphrodites transmettent leurs gènes à la fois par la voie mâle (le pollen) et la voie femelle (les ovules). La condition pour que la gynodïoécie se maintienne nécessite donc une fitness de la fonction femelle plus élevée chez les femelles que chez les hermaphrodites. Deux mécanismes mutuellement non exclusifs peuvent expliquer le maintien des femelles au sein de ces populations gynodioïques. D'une part, les femelles peuvent réallouer les ressources non utilisées pour la production de pollen et peuvent par conséquent produire plus d'ovules. D'autre part, la reproduction des femelles ne peut se faire que par allo-fécondation alors que les hermaphrodites, peuvent se reproduire à la fois par auto- et allo-fécondation. L'autofécondation s'accompagne en général d'une diminution de fitness de la descendance relativement à la progéniture issue d'allo-fécondation ; ce phénomène est connu sous le nom de dépression de consanguinité. Cette thèse avait pour but de mettre en évidence une éventuelle dépression de consanguinité chez Silene vulgaris, une espèce gynodioïque. Des hermaphrodites, issus de trois vallées alpines, ont été auto- et allo¬fécondés sur deux générations successives. La dépression de consanguinité pouvant s'exprimer à tous les stades de vie d'un individu, plusieurs traits de fitness, allant du nombre de graines par fruit à la production de gamètes ont été mesurés sur différents stades de vie successifs. L'estimation de la dépression de consanguinité totale atteignait des valeurs allant de 0.52 à 0.76 selon la vallée considérée, ce qui indiquerait que les hermaphrodites ont tout intérêt à limiter l'autofécondation et que les femelles ne devraient pas avoir de peine à subsister dans les vallées étudiées. Par la même occasion des mécanismes diminuant la purge potentielle du fardeau génétique, et permettant ainsi le maintien du « niveau » de dépression de consanguinité et par conséquence le maintien de la gynodïoécie ont été mis en évidence. En effet, nos résultats montrent que la dépression de consanguinité s'exprimait tard dans le cycle de vie permettant ainsi à un certain nombre individus consanguins de transmettre leurs allèles délétères à la génération suivante. D'autre part, la croissance in vivo des tubes polliniques d'auto-pollen était plus lente que celle de l'allo-pollen et donc en situation de compétition directe, les ovules devraient plutôt être issus d'allo-fécondation, diminuant ainsi les chances de purges d'allèles délétères. Enfin, l'apparition de femelles dans la progéniture d'hermaphrodites autofécondés diminue aussi les chances de purge d'allèles délétères. Il nous a été impossible de déterminer si l'apparition de femelles dans la descendance d'hermaphrodites autofécondés était due au déterminisme génétique du sexe ou si la différence de sexe ratio entre la descendance auto- et allo-fécondée était due à une éventuelle dépression de consanguinité inhibant la production de pollen. Nous avons observé que S. vulgaris ne présentaient pas uniquement des hermaphrodites et des femelles mais aussi toute sorte d'individus intermédiaires avec un nombre variable d'étamines viables. Nous avons pu mettre' en évidence des corrélations positives entre (1) la différence de sexe ratio (la proportion d'individus produisant du pollen) entre individus consanguins et non consanguins et une estimation de la dépression de consanguinité pour le nombre d'étamines viables d'individus produisant du pollen, ainsi qu'entre (2) la dépression de consanguinité pour le nombre d'étamines viables et celle estimée pour la viabilité du pollen. Chaque corrélation indique soit l'effet d'un (ou plusieurs) gène(s) pléiotropique(s), soit un déséquilibre de liaison entre les gènes. En considérant que ces corrélations sont le résultat d'effet pléiotropiques, la relation entre le nombre d'étamines viables par fleur et la viabilité du pollen, indiquerait un effet négatif de la consanguinité sur la production et la viabilité du pollen due partiellement à un gène majeur. La seconde corrélation indiquerait soit que les gènes responsables de la détermination du sexe agissent aussi sur l'expression de la fonction mâle soit que l'expression du sexe est sujette à la dépression de consanguinité, ou encore un mélange des deux. Aux regards de ces résultats, Silene vulgaris s'est avéré être un bon modèle de compréhension de l'évolution des systèmes de reproduction vers la séparation des sexes.
Resumo:
Inbreeding load affects not only the average fecundity of philopatric individuals but also its variance. From bet-hedging theory, this should add further dispersal pressures to those stemming from the mere avoidance of inbreeding. Pressures on both sexes are identical under monogamy or promiscuity. Under polygyny, by contrast, the variance in reproductive output decreases with dispersal rate in females but increases in males, which should induce a female-biased dispersal. To test this prediction, we performed individual-based simulations. From our results, a female-biased dispersal indeed emerges as both polygyny and inbreeding load increase. We conclude that sex-biased dispersal may be selected for as a bet-hedging strategy.
Resumo:
Using a game-theoretical approach, we investigate the dispersal patterns expected if inbreeding avoidance were the only reason for dispersal. The evolutionary outcome is always complete philopatry by one sex. The rate of dispersal by the other sex depends on patch size and mating system, as well as inbreeding and dispersal costs. If such costs are sex independent, then two stable equilibria coexist (male or female philopatry), with symmetric domains of attraction. Which sex disperses is determined entirely by history, genetic drift, and gene flow. An asymmetry in costs makes one domain of attraction extend at the expense of the other. In such a case, the dispersing sex might also be, paradoxically, the one that incurs the higher dispersal costs. As asymmetry increases, one equilibrium eventually disappears, which may result in a sudden evolutionary shift in the identity of the dispersing sex. Our results underline the necessity to control for phylogenetic relationships (e.g., through the use of independent-comparisons methods) when investigating empirical trends in dispersal. Our model also makes quantitative predictions on the rate of dispersal by the dispersing sex and suggests that inbreeding avoidance may only rarely be the sole reason for dispersal.
Resumo:
Variation in queen number alters the genetic structure of social insect colonies, which in turn affects patterns of kin-selected conflict and cooperation. Theory suggests that shifts from single- to multiple-queen colonies are often associated with other changes in the breeding system, such as higher queen turnover, more local mating, and restricted dispersal. These changes may restrict gene flow between the two types of colonies and it has been suggested that this might ultimately lead to sympatric speciation. We performed a detailed microsatellite analysis of a large population of the ant Formica selysi, which revealed extensive variation in social structure, with 71 colonies headed by a single queen and 41 by multiple queens. This polymorphism in social structure appeared stable over time, since little change in the number of queens per colony was detected over a five-year period. Apart from queen number, single- and multiple-queen colonies had very similar breeding systems. Queen turnover was absent or very low in both types of colonies. Single- and multiple-queen colonies exhibited very small but significant levels of inbreeding, which indicates a slight deviation from random mating at a local scale and suggests that a small proportion of queens mate with related males. For both types of colonies, there was very little genetic structuring above the level of the nest, with no sign of isolation by distance. These similarities in the breeding systems were associated with a complete lack of genetic differentiation between single- and multiple-queen colonies, which provides no support for the hypothesis that change in queen number leads to restricted gene flow between social forms. Overall, this study suggests that the higher rates of queen turnover, local mating, and population structuring that are often associated with multiple-queen colonies do not appear when single- and multiple-queen colonies still coexist within the same population, but build up over time in populations consisting mostly of multiple-queen colonies.
Resumo:
ABSTRACT: BACKGROUND: Local Mate Competition (LMC) theory predicts a female should produce a more female-biased sex ratio if her sons compete with each other for mates. Because it provides quantitative predictions that can be experimentally tested, LMC is a textbook example of the predictive power of evolutionary theory. A limitation of many earlier studies in the field is that the population structure and mating system of the studied species are often estimated only indirectly. Here we use microsatellites to characterize the levels of inbreeding of the bark beetle Xylosandrus germanus, a species where the level of LMC is expected to be high. RESULTS: For three populations studied, genetic variation for our genetic markers was very low, indicative of an extremely high level of inbreeding (FIS = 0.88). There was also strong linkage disequilibrium between microsatellite loci and a very strong genetic differentiation between populations. The data suggest that matings among non-siblings are very rare (3%), although sex ratios from X. germanus in both the field and the laboratory have suggested more matings between non-sibs, and so less intense LMC. CONCLUSIONS: Our results confirm that caution is needed when inferring mating systems from sex ratio data, especially when a lack of biological detail means the use of overly simple forms of the model of interest.
Resumo:
Selostus: Sukulaisuus- ja sukusiitosaste Suomen ayrshire- ja holstein-friisiläispopulaatioissa
Resumo:
Using a well-adapted Drosophila subobscura population (Avala, Serbia), a drastic experiment of inbreeding was carried out to assess whether the expected level of homozygosity could be reached or if other evolutionary forces affected the process. In general, no significant changes of inversion (or arrangement) frequencies were detected after 12 brother sister mating generations. Furthermore, no significant differences were obtained between observed and expected (under the inbreeding model) karyotypic frequencies. Thus, these results seemed to indicate that the main evolutionary factor in the experiment was inbreeding. However, in the G12 generation, complete chromosomal fixation was reached only in two out of the eight final inbred lines. In these lines, the chromosomal compositions were difficult to interpret, but they could be likely a consequence of adaptation to particular laboratory conditions (constant 18 °C, food, light period, etc.). Finally, in a second experiment, the inbred lines presented higher fertility at 18 °C than at 13 °C. Also, there was a significant line effect on fertility: inbred line number 6 (A1, J1, U1+2; U1+2+6, E8, and O3+4+7) presented the highest values, which maybe the result of an adaptation to laboratory conditions. Thus, the results obtained in our experiments reflect the adaptive potential of D. subobscura inversions.
Resumo:
The objectives of this paper were to derive the genetic variance of inbreeding depression ( ) and to predict the range of inbreeding depression (RID) in cross-pollinated populations. The variance of inbreeding depression is a function of the genetic variances related to dominance effects (, D2, and ), and of the inbreeding coefficients of the two generations in which inbreeding depression is measured (Ft and Fg). The results showed that the higher the level of dominance of a trait, the higher the variance of inbreeding depression. The magnitudes of were expected to be lower in improved (mean gene frequencies = > 0.6) and in unimproved ( < 0.4) populations, than in composite populations ( » 0.5). Data from a maize population used to illustrate the study showed that the range of inbreeding depression in the S¥ generation of selfing was from 48.7% to 85.3% for grain yield, and from 13.9% to 24.5% for plant height. A mating design outlined to estimate the genetic variance of inbreeding depression, the range of inbreeding depression, and of the range of inbred lines is presented.
Resumo:
Reciprocal selection between interacting species is a major driver of biodiversity at both the genetic and the species level. This reciprocal selection, or coevolution, has led to the diversification of two highly diverse and abundant groups of organisms, flowering plants and their insect herbivores. In heterogeneous environments, the outcome of coevolved species interactions is influenced by the surrounding community and/or the abiotic environment. The process of adaptation allows species to adapt to their local conditions and to local populations of interacting species. However, adaptation can be disrupted or slowed down by an absence of genetic variation or by increased inbreeding, together with the following inbreeding depression, both of which are common in small and isolated populations that occur in fragmented environments. I studied the interaction between a long-lived plant Vincetoxicum hirundinaria and its specialist herbivore Abrostola asclepiadis in the southwestern archipelago of Finland. I focused on mutual local adaptation of plants and herbivores, which is a demonstration of reciprocal selection between species, a prerequisite for coevolution. I then proceeded to investigate the processes that could potentially hamper local adaptation, or species interaction in general, when the population size is small. I did this by examining how inbreeding of both plants and herbivores affects traits that are important for interaction, as well as among-population variation in the effects of inbreeding. In addition to bi-parental inbreeding, in plants inbreeding can arise from self-fertilization which has important implications for mating system evolution. I found that local adaptation of the plant to its herbivores varied among populations. Local adaptation of the herbivore varied among populations and years, being weaker in populations that were most connected. Inbreeding caused inbreeding depression in both plants and herbivores. In some populations inbreeding depression in herbivore biomass was stronger in herbivores feeding on inbred plants than in those feeding on outbred ones. For plants it was the other way around: inbreeding depression in anti-herbivore resistance decreased when the herbivores were inbred. Underlying some of the among-population variation in the effects of inbreeding is variation in plant phenolic compounds. However, variation in the modification of phenolic compounds in the digestive tract of the herbivore did not explain the inbreeding depression in herbivore biomass. Finally, adult herbivores had a preference for outbred host plants for egg deposition, and herbivore inbreeding had a positive effect on egg survival when the eggs were exposed to predators and parasitoids. These results suggest that plants and herbivores indeed exert reciprocal selection, as demonstrated by the significant local adaptation of V. hirundinaria and A. asclepiadis to one another. The most significant cause of disruption of the local adaptation of herbivore populations was population connectivity, and thus probably gene flow. In plants local adaptation tended to increase with increasing genetic variation. Whether or not inbreeding depression occurred varied according to the life-history stage of the herbivore and/or the plant trait in question. In addition, the effects of inbreeding strongly depended on the population. Taken together, inbreeding modified plant-herbivore interactions at several different levels, and can thus affect the strength of reciprocal selection between species. Thus inbreeding has the potential to affect the outcome of coevolution.
Resumo:
Many populations have recovered from severe bottlenecks either naturally or through intensive conservation management. In the past, however, few conservation programs have monitored the genetic health of recovering populations. We conducted a conservation genetic assessment of a small, reintroduced population of Mauritius Kestrel (Falco punctatus) to determine whether genetic deterioration has occurred since its reintroduction. We used pedigree analysis that partially accounted for individuals of unknown origin to document that (1) inbreeding occurred frequently (2.6% increase per generation; N-el = 18.9), (2) 25% of breeding pairs were composed of either closely or moderately related individuals, (3) genetic diversity has been lost from the population (1,6% loss per generation; N-ev = 32.1) less rapidly than the corresponding increase in inbreeding, and (4) ignoring the contribution of unknown individuals to a pedigree will bias the metrics derived from that pedigree, ultimately obscuring the prevailing genetic dynamics. The rates of inbreeding and loss of genetic variation in the subpopulation of Mauritius Kestrel we examined were extreme and among the highest yet documented in a wild vertebrate population. Thus, genetic deterioration may affect this population's long-term viability. Remedial conservation strategies are needed to reduce the impact of inbreeding and loss of genetic variation in this species, We suggest that schemes to monitor genetic variation after reintroduction should be an integral component of endangered species recovery programs
Resumo:
The endemic pink pigeon has recovered from less than 20 birds in the mid-1970s to 355 free-living individuals in 2003. A major concern for the species' recovery has been the potential genetic problem of inbreeding. Captive pink pigeons bred for reintroduction were managed to maximise founder representation and minimise inbreeding. In this paper, we quantify the effect of inbreeding on survival and reproductive parameters in captive and wild populations and quantify DNA sequence variation in the mitochondrial d-loop region for pink pigeon founders. Inbreeding affected egg fertility, squab, juvenile and adult survival, but effects were strongest in highly inbred birds (F≥0.25). Inbreeding depression was more apparent in free-living birds where even moderate levels of inbreeding affected survival, although highly inbred birds were equally compromised in both captive and wild populations. Mitochondrial DNA haplotypic diversity in pink pigeon founders is low, suggesting that background inbreeding is contributing to low fertility and depressed productivity in this species, as well as comparable survival of some groups of non-inbred and nominally inbred birds. Management of wild populations has boosted population growth and may be required long-term to offset the negative effects of inbreeding depression and enhance the species' survival.