20 resultados para IMMUNOSENESCENCE
Resumo:
Immunosenescence is characterized by a complex remodelling of the immune system, mainly driven by lifelong antigenic burden. Cells of the immune system are constantly exposed to a variety of stressors capable of inducing apoptosis, including antigens and reactive oxygen species continuously produced during immune response and metabolic pathways. The overall homeostasis of the immune system is based on the balance between antigenic load, oxidative stress, and apoptotic processes on one side, and the regenerative potential and renewal of the immune system on the other. Zinc is an essential trace element playing a central role on the immune function, being involved in many cellular processes, such as cell death and proliferation, as cofactor of enzymes, nuclear factors and hormones. In this context, the age associated changes in the immune system may be in part due to zinc deficiency, often observed in aged subjects and able to induce impairment of several immune functions. Thus, the aim of this work was to investigate the role of zinc in two essential events for immunity during aging, i.e. apoptosis and cell proliferation. Spontaneous and oxidative stress-induced apoptosis were evaluated by flow cytometry in presence of a physiological concentration of zinc in vitro on peripheral blood mononuclear cells (PBMCs) obtained from healthy subjects of different age: a group of young subjects, a group of old subjects and a group of nonagenarians. In addition, cell cycle phases were analyzed by flow cytometry in PBMCs, obtained from the subjects of the same groups in presence of different concentration of zinc. We also analyzed the influence of zinc in these processes in relation to p53 codon 72 polymorphism, known to affect apoptosis and cell cycle in age-dependent manner. Zinc significantly reduces spontaneous apoptosis in all age-groups; while it significantly increases oxidative stress-induced late apoptosis/necrosis in old and nonagenarians subjects. Some factors involved in the apoptotic pathway were studied and a zinc effect on mitochondrial membrane depolarization, cytochrome C release, caspase-3 activation, PARP cleavage and Bcl-2 expression was found. In conclusion, zinc inhibits spontaneous apoptosis in PBMCs contrasting the harmful effects due to the cellular culture conditions. On the other hand, zinc is able to increase toxicity and induce cell death in PBMCs from aged subjects when cells are exposed to stressing agents that compromise antioxidant cellular systems. Concerning the relationship between the susceptibility to apoptosis and p53 codon 72 genotype, zinc seems to affect apoptosis only in PBMCs from Pro- people suggesting a role of this ion in strengthening the mechanism responsible of the higher propensity of Pro- towards apoptosis. Regarding cell cycle, high doses of zinc could have a role in the progression of cells from G1 to S phase and from S to G2/M phase. These effect seems depend on the age of the donor but seems to be unrelated to p53 codon 72 genotype. In order to investigate the effect of an in vivo zinc supplementation on apoptosis and cell cycle, PBMCs from a group of aged subjects were studied before and after six weeks of oral zinc supplementation. Zinc supplementation reduces spontaneous apoptosis and it strongly reduces oxidative stress-induced apoptosis. On the contrary, no effect of zinc was observed on cell cycle. Therefore, it’s clear that in vitro and in vivo zinc supplementation have different effects on apoptosis and cell cycle in PBMCs from aged subjects. Further experiments and clinical trials are necessary to clarify the real effect of an in vivo zinc supplementation because this preliminary data could encourage the of this element in all that disease with oxidative stress pathogenesis. Moreover, the expression of metallothioneins (MTs), proteins well known for their zinc-binding ability and involved in many cellular processes, i.e. apoptosis, metal ions detoxification, oxidative stress, differentiation, was evaluated in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from young and old healthy subjects in presence of different concentration of zinc in vitro. Literature data reported that during ageing the levels of these proteins increase and concomitantly they lose the ability to release zinc. This fact induce a down-regulation of many biological functions related to zinc, such as metabolism, gene expression and signal transduction. Therefore, these proteins may turn from protective in young-adult age to harmful agents for the immune function in ageing following the concept that several genes/proteins that increase fitness early in life may have negative effects later in life: named “Antagonistic Pleyotropy Theory of Ageing”. Data obtained in this work indicate an higher and faster expression of MTs with lower doses of zinc in total lymphocytes, in CD4+ and in CD8+ T lymphocytes from old subjects supporting the antagonistic pleiotropic role of these proteins.
Resumo:
Las células en los tejidos biológicos están continuamente sometidas a estímulos físicos tales como la presión hidrostática y esfuerzos de tracción, compresión o cortante, entre otros. La importancia de los estímulos mecánicos en el comportamiento de las células se ha reconocido recientemente al comprobarse cómo la naturaleza de estas fuerzas puede cambiar en patologías tales como las enfermedades vasculares o el cáncer. En respuesta a estos cambios, las células reaccionan modificando desde su forma o aspecto hasta su ciclo celular. Consecuentemente, el interés por el comportamiento mecánico de las células ha experimentado un auge creciente que ha requerido el desarrollo de varias técnicas de caracterización. En este contexto, se puede afirmar que una de las técnicas que ha irrumpido con más fuerza en esta nueva área, situada entre el mundo biológico y el físico, es la microscopía de fuerza atómica. En esta Tesis se ha abordado el estudio mediante microscopía de fuerza atómica de linfocitos de ratón que constituyen un linaje celular especialmente difícil de caracterizar mediante esta técnica por su tamaño y naturaleza no adherente. Los linfocitos, como actores fundamentales del sistema inmune, tienen gran importancia en la determinación de la respuesta que un organismo desencadena ante la presencia de un biomaterial. Bajo esta premisa, y como condición previa a la caracterización de los linfocitos, ha sido necesario el desarrollo de una metodología robusta y de amplia aplicabilidad que permita el estudio de células sobre biomateriales. Finalmente y con el objetivo de correlacionar el comportamiento mecánico de los linfocitos con alguna característica fisiológica relevante, se ha analizado la hipótesis de que el comportamiento mecánico pueda ser utilizado como marcador de la edad biológica. Consecuentemente se ha abordado el estudio del comportamiento mecánico de los linfocitos clasificados por grupos de edad, de manera que se han obtenido los primeros resultados que indican cómo puede manifestarse el proceso de inmunosenescencia -depresión del sistema inmune relacionada con el envejecimiento- en el comportamiento mecánico de las células del sistema inmune. Cells within tissues are continuously exposed to physical forces including hydrostatic pressure, shear stress, and compression and tension forces. The relevance of these mechanical stimuli has recently been recognised by different works in which significant changes were observed in these forces when they were measued in individuals affected by cardiovasvular diseases or cancer. Cells may alter their orientation, shape, internal constitution, contract, migrate, adhere, modify the synthesis and degradation of extracellular constituents, or even their life cycle in response to perturbations in their mechanical environment. As a consequence of this, the attention in cell mechanical behavior has undergone a significant thrust and novel techniques have been developed. In this context, atomic force microscopy has become a basic tool for the progress of this field. In this Thesis, the mechanical behavior of living murine T-lymphocytes was assessed by atomic force microscopy. Lymphocytes play a main role in the immune system of the individual and, consequently, in the immune response triggered by the presence of a biomaterial. The observation and characterization of the lymphocytes required the development of a robust experimental procedure that allowed overcoming the difficulties related to the analysis of this cell lineage, in particular their relatively large size and non-adherent character. These procedures could be easily transferred to other non-adherent cell lineages. Finally, to check the viability of developed method, we study the lymphocyte mechanical behavior as a function of the murine ageing. The obtained data represent a first step in the knowledge about how mechanical stimuli can affect the age-dependent decrease in immunological competence, i.e., the immunosenescence.
Resumo:
Individuals within the aged population show an increased susceptibility to infection, implying a decline in immune function, a phenomenon known as immunosenescence. Paradoxically, an increase in autoimmune disease, such as rheumatoid arthritis, is also associated with ageing, therefore some aspects of the immune system appear to be inappropriately active in the elderly. The above evidence suggests inappropriate control of the immune system as we age. Macrophages, and their precursors monocytes, play a key role in control of the immune system. They play an important role in host defence in the form of phagocytosis, and also link the innate and adaptive immune system via antigen presentation. Macrophages also have a reparative role, as professional phagocytes of dead and dying cells. Clearance of apoptotic cells by macrophages has also been shown to directly influence immune responses in an anti-inflammatory manner. Inappropriate control of macrophage function with regards to dead cell clearance may contribute to pathology as we age. The aims of this study were to assess the impact of lipid treatment, as a model of the aged environment, on the ability of macrophages to interact with, and respond to, apoptotic cells. Using a series of in vitro cell models, responses of macrophages (normal and lipid-loaded) to apoptotic macrophages (normal and lipid-loaded) were investigated. Monocyte recruitment to apoptotic cells, a key process in resolving inflammation, was assessed in addition to cytokine responses. Data here shows, for the first time, that apoptotic macrophages (normal and lipid-loaded) induce inflammation in human monocyte-derived macrophages, a response that could drive inflammation in age-associated pathology e.g. atherosclerosis. Monoclonal antibody inhibition studies suggest the classical chemokine CX3CL1 may be involved in monocyte recruitment to apoptotic macrophages, but not apoptotic foam cells, therefore differential clearance strategies may be employed following lipid-loading. CD14, an important apoptotic cell tethering receptor, was not found to have a prominent role in this process, whilst the role for ICAM-3 remains unclear. Additionally, a small pilot study using macrophages from young (<25) and mid-life (>40) donors was undertaken. Preliminary data was gathered to assess the ability of primary human monocyte-derived macrophages, from young and mid-life donors, to interact with, and respond to, apoptotic cells. MØ from mid-life individuals showed no significant differences in their ability to respond to immune modulation by apoptotic cells compared to MØ from young donors. Larger cohorts would be required to investigate whether immune modulation of MØ by apoptotic cells contribute to inflammatory pathology throughout ageing.
Resumo:
The study of immune system aging, i.e. immunosenescence, is a relatively new research topic. It deals with understanding the processes of immuno-degradation that indicate signs of functionality loss possibly leading to death. Even though it is not possible to prevent immunosenescence, there is great benefit in comprehending its causes, which may help to reverse some of the damage done and thus improve life expectancy. One of the main factors influencing the process of immunosenescence is the number and phenotypical variety of naive T cells in an individual. This work presents a review of immunosenescence, proposes system dynamics modelling of the processes involving the maintenance of the naive T cell repertoire and presents some preliminary results.
Resumo:
La malattia di Parkinson è una malattia neurodegenerativa caratterizzata da una progressiva disfunzione motoria e cognitiva. È noto che l'età avanzata è il principale fattore di rischio per la malattia di Parkinson e alcuni studi hanno dimostrato un'accelerazione dell'età biologica nelle fasi più avanzate della malattia. Questo studio si propone di valutare se l'accelerazione dell'invecchiamento biologico descritta nelle fasi avanzate della malattia di Parkinson caratterizzi anche le prime fasi della malattia. A tal fine sono stati utilizzati due tipi di marcatori biologici di età, basati sull'analisi della metilazione del DNA del sangue (l'orologio epigenetico e sue varianti) e dei profili degli N-glicani nel plasma (GlycoAge Test). I biomarcatori sono stati valutati in campioni ottenuti da pazienti con malattia di Parkinson de novo, con diagnosi recente e non ancora in trattamento farmacologico, nonché da pazienti con stadi più avanzati della malattia e da controlli sani. I risultati ottenuti nelle prime fasi della malattia non mostrano segni di invecchiamento accelerato, che trovano conferma nelle fasi più avanzate. Dai dati di metilazione è possibile prevedere le proporzioni delle diverse popolazioni di leucociti. Questa analisi nelle prime fasi della malattia ha già evidenziato significative alterazioni che seguono in parte quelle caratteristiche dell'invecchiamento del sistema immunitario, suggerendo un'immunosenescenza accelerata nella malattia di Parkinson. Infine, i dati sulla metilazione del DNA sono stati analizzati per identificare le differenze nelle regioni metilate del genoma tra pazienti con malattia di Parkinson e controlli. I risultati suggeriscono l'esistenza di piccole ma significative alterazioni nella metilazione del DNA che caratterizzano lo stadio precoce e/o avanzato della malattia. In conclusione, questo studio suggerisce che le prime fasi della malattia di Parkinson sono caratterizzate da specifiche alterazioni epigenetiche e invecchiamento precoce del sistema immunitario, che tuttavia non si traducono in un'alterazione dei biomarcatori di invecchiamento epigenetici e glicomici.