986 resultados para ID transfer
Resumo:
This article has two main objectives. First, we offer an introduction to the subfield of generative third language (L3) acquisition. Concerned primarily with modeling initial stages transfer of morphosyntax, one goal of this program is to show how initial stages L3 data make significant contributions toward a better understanding of how the mind represents language and how (cognitive) economy constrains acquisition processes more generally. Our second objective is to argue for and demonstrate how this subfield will benefit from a neuro/psycholinguistic methodological approach, such as event-related potential experiments, to complement the claims currently made on the basis of exclusively behavioral experiments. Palabras clave
Resumo:
In ultracold atoms settings, inelastic light scattering is a preeminent technique to reveal static and dynamic properties at nonzero momentum. In this work, we investigate an array of one-dimensional trapped Bose gases, by measuring both the energy and the momentum imparted to the system via light scattering experiments. The measurements are performed in the weak perturbation regime, where these two quantities-the energy and momentum transferred-are expected to be related to the dynamic structure factor of the system. We discuss this relation, with special attention to the role of in-trap dynamics on the transferred momentum.
Resumo:
The intensity and location of Sun glint in two Medium Resolution Imaging Spectrometer (MERIS) images was modeled using a radiative transfer model that includes elevation features as well as the slope of the sea surface. The results are compared to estimates made using glint flagging and correction approaches used within standard atmospheric correction processing code. The model estimate gives a glint pattern with a similar width but lower peak level than any current method, or than that estimated by a radiative transfer model with surfaces that include slope but not height. The MERIS third reprocessing recently adopted a new slope statistics model for Sun glint correction; the results show that this model is an outlier with respect to both the elevation model and other slope statistics models and we recommend that its adoption should be reviewed.
Resumo:
We present here vertical fluxes of oxygenated volatile organic compounds (OVOCs) measured with eddy covariance (EC) during the period of March to July 2012 near the southwest coast of the United Kingdom. The performance of the proton-transfer-reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Observed mixing ratios and fluxes of OVOCs (specifically methanol, acetaldehyde, and acetone) vary significantly with time of day and wind direction. Higher mixing ratios and fluxes of acetaldehyde and acetone are found in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol mixing ratio and flux do not demonstrate consistent diel variability, suggesting sources in addition to plants. We estimate air-sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1 sigma) mixing ratio of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction out-paces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime mixing ratios of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long-distance transport, respectively.
Resumo:
Shipboard measurements of eddy covariance dimethylsulfide (DMS) air–sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s−1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air–sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air–sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.
Resumo:
Air–sea dimethylsulfide (DMS) fluxes and bulk air–sea gradients were measured over the Southern Ocean in February–March 2012 during the Surface Ocean Aerosol Production (SOAP) study. The cruise encountered three distinct phytoplankton bloom regions, consisting of two blooms with moderate DMS levels, and a high biomass, dinoflagellate-dominated bloom with high seawater DMS levels (> 15 nM). Gas transfer coefficients were considerably scattered at wind speeds above 5 m/s. Bin averaging the data resulted in a linear relationship between wind speed and mean gas transfer velocity consistent with that previously observed. However, the wind-speed-binned gas transfer data distribution at all wind speeds is positively skewed. The flux and seawater DMS distributions were also positively skewed, which suggests that eddy covariance-derived gas transfer velocities are consistently influenced by additional, log-normal noise. A flux footprint analysis was conducted during a transect into the prevailing wind and through elevated DMS levels in the dinoflagellate bloom. Accounting for the temporal/spatial separation between flux and seawater concentration significantly reduces the scatter in computed transfer velocity. The SOAP gas transfer velocity data show no obvious modification of the gas transfer–wind speed relationship by biological activity or waves. This study highlights the challenges associated with eddy covariance gas transfer measurements in biologically active and heterogeneous bloom environments.
Resumo:
Mothers can improve the quality of their offspring by increasing the level of certain components in their eggs. To examine whether or not mothers increase deposition of such components in eggs as a function of food availability, we food-supplemented black-legged kittiwake females (Rissa tridactyla) before and during egg laying and compared deposition of androgens and antibodies into eggs of first and experimentally induced replacement clutches. Food-supplemented females transferred lower amounts of androgens and antibodies into eggs of induced replacement clutches than did non-food-supplemented mothers, whereas first clutches presented no differences between treatments. Our results suggest that when females are in lower condition, they transfer more androgens and antibodies into eggs to facilitate chick development despite potential long-term costs for juveniles. Females in prime condition may avoid these potential long-term costs because they can provide their chicks with more and higher quality resources.
Resumo:
Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.
Resumo:
The need for better gene transfer systems towards improved risk=benefit balance for patients remains a major challenge in the clinical translation of gene therapy (GT). We have investigated the improvement of integrating vectors safety in combining (i) new short synthetic genetic insulator elements (GIE) and (ii) directing genetic integration to heterochromatin. We have designed SIN-insulated retrovectors with two candidate GIEs and could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro (p20) and lentivectors (DCaro4) (see Duros et al, abstract ibid). Since GIEs are believed to shield the transgenic cassette from inhibitory effects and silencing, DCaro4 has been further tested with chimeric HIV-1 derived integrases which comprise C-ter chromodomains targeting heterochromatin through either histone H3 (ML6chimera) or methylatedCpGislands (ML10). With DCaro4 only and both chimeras, a homogeneous expression is evidenced in over 20% of the cells which is sustained over time. With control lentivectors, less than 2% of cells express GFP as compared to background using a control double-mutant in both catalytic and ledgf binding-sites; in addition, a two-times increase of expression can be induced with histone deacetylase inhibitors. Our approach could significantly reduce integration into open chromatin sensitive sites in stem cells at the time of transduction, a feature which might significantly decrease subsequent genotoxicity, according to X-SCIDs patients data.Work performed with the support of EC-DG research within the FP6-Network of Excellence, CLINIGENE: LSHB-CT-2006-018933
Resumo:
To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.
Resumo:
Successful innovation diffusion process may well take the form of knowledge transfer process. Therefore, the primary objectives of this paper include: first, to evaluate the interrelations between transfer of knowledge and diffusion of innovation; and second to develop a model to establish a connection between the two. This has been achieved using a four-step approach. The first step of the approach is to assess and discuss the theories relating to knowledge transfer (KT) and innovation diffusion (ID). The second step focuses on developing basic models for KT and ID, based on the key theories surrounding these areas. A considerable amount of literature has been written on the association between knowledge management and innovation, the respective fields of KT and ID. The next step, therefore, explores the relationship between innovation and knowledge management in order to identify the connections between the latter, i.e. KT and ID. Finally, step four proposes and develops an integrated model for KT and ID. As the developed model suggests the sub-processes of knowledge transfer can be connected to the innovation diffusion process in several instances as discussed and illustrated in the paper.
Resumo:
Purpose: The objective of this study was to evaluate and compare 3 impression techniques for osseointegrated implant transfer procedures.Materials and Methods: (1) Group Splinted with Acrylic Resin (SAR), impression with square copings splinted with prefabricated autopolymerizing acrylic resin bar; (2) Group Splinted with Light-Curing Resin (SLR), impression, with square copings splinted with prefabricated light-curing composite resin bar; (3). Group Independent Air-abraded (IAA), impression with independent square coping aluminum oxide air-abraded. Impression procedures were performed with polyether material, and the data obtained was compared with a control group. These were characterized by metal matrix (MM) measurement values of the implants inclination positions at 90 and 05 degrees in relation to the matrix surface. Readings of analogs and implant inclinations were assessed randomly through graphic computation AutoCAD software. Experimental groups angular deviation with MM were submitted to analysis of variance and means were compared through Tukey's test (P < 0.05).Results: There was no statistical significant difference between SAR and SLR experimental groups and MM for vertical and angulated implants. Group IAA presented a statistically significant difference for angulated implants.Conclusion: It was concluded within the limitations of this study, that SAR and SLR produced more accurate casts than IAA technique, which presented inferior results.
Resumo:
The accuracy of impressions that transfer the relationship of the implant to the metal framework of the prosthesis continues to be a problem. This study was designed to evaluate the accuracy of the transfer process under variable conditions with regard to implant analog angulations, impression materials, and techniques. Replicas (n = 60) of a metal matrix (control) containing four implants at 90°, 80°, 75°, and 65° in relation to the horizontal surface were obtained by using three impression techniques: T1 - indirect technique with conical copings in closed trays; T2 - direct technique with square copings in open trays; and T3 - square copings splinted with autopolymerizing acrylic resin; and four elastomers: P-polysulfide; I-polyether; A-addition silicone; and Z-condensation silicone. The values of the implant analog annulations were assessed by a profilometer to the nearest 0.017°, then submitted to analysis of variance for comparisons at significance of 5% (P < .05). For implant analog at 90°, the material A associated with T2 and material Z with T3 behaved differently (P < .05) from all groups. At 80°, all materials behaved differently (P < .01) with T1. At 75°, when T1 was associated, materials P and A showed similar behavior, as well as materials I and Z; however, P and A were different from I and Z (P < .01). When T3 was associated, all experimental groups behaved differently among them (P < .01). At 65°, the materials P and Z behaved differently (P < .01) from the control group with T1, T2, and T3; the materials I and A behaved differently from the control group (P < .01) when T1 and T2, respectively, were associated. The more perpendicular the implant analog annulation is in relation to the horizontal surface, the more accurate the impression. The best materials were material I and A and the most satisfactory technique was technique 3.