993 resultados para IBOTENIC ACID LESION


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les antipsychotiques sont utilisés en clinique depuis plus de 50 ans pour pallier aux symptômes de la schizophrénie. Malgré une recherche intensive, les mécanismes cellulaires et moléculaires responsables de l’effet clinique de cette médication demeurent encore nébuleux. Ces drogues sont reconnues comme des antagonistes des récepteurs D2 de la dopamine et peuvent moduler la transcription génique dans le striatum. Au cours des recherches qui ont mené à l'écriture de cette thèse, nous avons exploré l’expression de Nur77, un facteur de transcription de la famille des récepteurs nucléaires, afin de caractériser le rôle de la dopamine, la sérotonine, l’adénosine et le glutamate dans la régulation génique contrôlée par les antagonistes D2. En premier lieu, nous avons examiné l’impact de la co-administration d’agents sérotonergiques et adrénergiques sur l’expression de l’ARNm de Nur77 induite par l’halopéridol, un antipsychotique de première génération. Nous avons observé que le 8-OH-DPAT et le MDL11939 préviennent partiellement l’induction de Nur77 dans le striatum. Au contraire, l’idazoxan potentialise l’effet de l’halopéridol sur l’expression de Nur77 alors que le prazosin reste sans effet. Ces résultats démontrent que l’expression striatale de Nur77 induite par l’halopéridol peut être modulée à la baisse avec un agoniste 5-HT1A ou un antagoniste 5-HT2A. Par la suite, nous avons évalué dans divers paradigmes expérimentaux l’effet de l’éticlopride, un antagoniste spécifique D2, afin d’explorer davantage le mécanisme de l’effet transcriptionnel des antagonistes D2. Étonnamment, la suppression de l’isoforme D2L chez la souris D2L KO ne réduit pas la réponse de l’éticlopride dans le striatum. Par contre, une lésion corticale avec l’acide iboténique bloque l’effet de l’éticlopride sur la transcription de Nur77, suggérant un rôle du glutamate. La combinaison d’un antagoniste des récepteurs métabotropes du glutamate de types 5 (mGluR5) et d’un antagoniste des récepteurs de l’adénosine A2A abolit complètement l’augmentation de la transcription de Nur77 induit par l’éticlopride dans le striatum. La modulation directe de l’expression striatale de Nur77 par les récepteurs mGluR5 et A2A a été confirmée dans un modèle de cultures organotypiques de tranches cérébrales. Ces résultats démontrent clairement que la modulation de l’expression génique dans le striatum, à la suite d’un traitement avec un antagoniste D2 pourrait être indépendante d’une interaction directe avec les récepteurs D2 post-synaptiques, et reposerait plutôt sur son interaction avec les récepteurs D2 hétérosynaptiques des afférences corticostriées et l’activation subséquente des récepteurs post-synaptiques du glutamate et de l’adénosine. En résumé, nos résultats suggèrent que l’interaction des antipsychotiques atypiques avec les récepteurs 5-HT2A et 5-HT1A pourrait expliquer la différence dans le patron d’expression génique induit par ces drogues en comparaison avec les antipsychotiques typiques. De plus, nos résultats révèlent un nouveau mécanisme d’action des antagonistes D2 et supportent un rôle primordial du glutamate et de l’adénosine dans les effets des antipsychotiques de première génération.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is evidence that serotonin [ 5- hydroxytryptamine ( 5- HT)] is involved in the physiological responses to hypercapnia. Serotonergic neurons represent the major cell type ( comprising 15 - 20% of the neurons) in raphe magnus nucleus ( RMg), which is a medullary raphe nucleus. In the present study, we tested the hypothesis 1) that RMg plays a role in the ventilatory and thermal responses to hypercapnia, and 2) that RMg serotonergic neurons are involved in these responses. To this end, we microinjected 1) ibotenic acid to promote nonspecific lesioning of neurons in the RMg, or 2) anti- SERT- SAP ( an immunotoxin that utilizes a monoclonal antibody to the third extracellular domain of the serotonin reuptake transporter) to specifically kill the serotonergic neurons in the RMg. Hypercapnia caused hyperventilation and hypothermia in all groups. RMg nonspecific lesions elicited a significant reduction of the ventilatory response to hypercapnia due to lower tidal volume ( V-T) and respiratory frequency. Rats submitted to specific killing of RMg serotonergic neurons showed no consistent difference in ventilation during air breathing but had a decreased ventilatory response to CO2 due to lower VT. The hypercapnia- induced hypothermia was not affected by specific or nonspecific lesions of RMg serotonergic neurons. These data suggest that RMg serotonergic neurons do not participate in the tonic maintenance of ventilation during air breathing but contribute to the ventilatory response to CO2. Ultimately, this nucleus may not be involved in the thermal responses CO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was performed to validate a spatial working memory task using pharmacological manipulations. The water escape T-maze, which combines the advantages of the Morris water maze and the T-maze while minimizes the disadvantages, was used. Scopolamine, a drug that affects cognitive function in spatial working memory tasks, significantly decreased the rat performance in the present delayed alternation task. Since glutamate neurotransmission plays an important role in the maintaining of working memory, we evaluated the effect of ionotropic and metabotropic glutamatergic receptors antagonists, administered alone or in combination, on rat behaviour. As the acquisition and performance of memory tasks has been linked to the expression of the immediately early gene cFos, a marker of neuronal activation, we also investigated the neurochemical correlates of the water escape T-maze after pharmacological treatment with glutamatergic antagonists, in various brain areas. Moreover, we focused our attention on the involvement of perirhinal cortex glutamatergic neurotransmission in the acquisition and/or consolidation of this particular task. The perirhinal cortex has strong and reciprocal connections with both specific cortical sensory areas and some memory-related structures, including the hippocampal formation and amygdala. For its peculiar position, perirhinal cortex has been recently regarded as a key region in working memory processes, in particular in providing temporary maintenance of information. The effect of perirhinal cortex lesions with ibotenic acid on the acquisition and consolidation of the water escape T-maze task was evaluated. In conclusion, our data suggest that the water escape T-maze could be considered a valid, simple and quite fast method to assess spatial working memory, sensible to pharmacological manipulations. Following execution of the task, we observed cFos expression in several brain regions. Furthermore, in accordance to literature, our results suggest that glutamatergic neurotransmission plays an important role in the acquisition and consolidation of working memory processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dynamic characteristics of reflex eye movements were measured in two strains of chronically prepared mice by using an infrared television camera system. The horizontal vestibulo-ocular reflex (HVOR) and horizontal optokinetic response (HOKR) were induced by sinusoidal oscillations of a turntable, in darkness, by 10° (peak to peak) at 0.11–0.50 Hz and of a checked-pattern screen, in light, by 5–20°at 0.11–0.17 Hz, respectively. The gains and phases of the HVOR and HOKR of the C57BL/6 mice were nearly equivalent to those of rabbits and rats, whereas the 129/Sv mice exhibited very low gains in the HVOR and moderate phase lags in the HOKR, suggesting an inherent sensory-motor anomaly. Adaptability of the HOKR was examined in C57BL/6 mice by sustained screen oscillation. When the screen was oscillated by 10° at 0.17 Hz, which induced sufficient retinal slips, the gain of the HOKR increased by 0.08 in 1 h on average, whereas the stimuli that induced relatively small or no retinal slips affected the gain very little. Lesions of the flocculi induced by local applications of 0.1% ibotenic acid and lesions of the inferior olivary nuclei induced by i.p. injection of 3-acetylpyridine in C57BL/6 mice little affected the dynamic characteristics of the HVOR and HOKR, but abolished the adaptation of the HOKR. These results indicate that the olivo-floccular system plays an essential role in the adaptive control of the ocular reflex in mice, as suggested in other animal species. The data presented provide the basis for analyzing the reflex eye movements of genetically engineered mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have determined the volume and location of hippocampal tissue required for normal acquisition of a spatial memory task. Ibotenic acid was used to make bilateral symmetric lesions of 20-100% of hippocampal volume. Even a small transverse block (minislab) of the hippocampus (down to 26% of the total) could support spatial learning in a water maze, provided it was at the septal (dorsal) pole of the hippocampus. Lesions of the septal pole, leaving 60% of the hippocampi intact, caused a learning deficit, although normal electrophysiological responses, synaptic plasticity, and preserved acetylcholinesterase staining argue for adequate function of the remaining tissue. Thus, with an otherwise normal brain, hippocampal-dependent spatial learning only requires a minislab of dorsal hippocampal tissue.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We were supported by the Biotechnology and Biological Sciences Research Council grant BB/H001123/1 (P.W.), the Medical Research Council grants G0601498 and G1100546/2 (P.W.), Tenovus Scotland Grant G09/17 (A.J.M.) and the University of Aberdeen (P.W.). We thank O. Tüscher for discussion, P. Teismann and the microscopy core facility at the University of Aberdeen for the use of microscopy equipment, L. Strachan, A. Plano, S. Deiana for help with behavioral testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current research efforts are focused on the application of growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF), as neuroregenerative approaches that will prevent the neurodegenerative process in Parkinson's disease. Continuing a previous work published by our research group, and with the aim to overcome different limitations related to growth factor administration, VEGF and GDNF were encapsulated in poly(lactic-co-glycolic acid) nanospheres (NS). This strategy facilitates the combined administration of the VEGF and GDNF into the brain of 6-hydroxydopamine (6-OHDA) partially lesioned rats, resulting in a continuous and simultaneous drug release. The NS particle size was about 200 nm and the simultaneous addition of VEGF NS and GDNF NS resulted in significant protection of the PC-12 cell line against 6-OHDA in vitro. Once the poly(lactic-co-glycolic acid) NS were implanted into the striatum of 6-OHDA partially lesioned rats, the amphetamine rotation behavior test was carried out over 10 weeks, in order to check for in vivo efficacy. The results showed that VEGF NS and GDNF NS significantly decreased the number of amphetamine-induced rotations at the end of the study. In addition, tyrosine hydroxylase immunohistochemical analysis in the striatum and the external substantia nigra confirmed a significant enhancement of neurons in the VEGF NS and GDNF NS treatment group. The synergistic effect of VEGF NS and GDNF NS allows for a reduction of the dose by half, and may be a valuable neurogenerative/neuroreparative approach for treating Parkinson's disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subacute toxicity of aristolochic acid (AA) was investigated by H-1 NMR spectroscopic and pattern recognition (PR)-based metabonomic methods. Model toxins were used to enable comparisons of the urinary profiles from rats treated with known toxicants and AA at various time intervals. Urinary H-1 NMR spectra were data-processed and analyzed by pattern recognition method. The result of visual comparison of the spectra showed that AA caused a renal proximal tubular and papillary lesion and a slight hepatic impair. Pattern recognition analysis indicated that the renal proximal tubule lesion was the main damage induced by AA, and the renal toxicity induced by AA was a progressive course with the accumulation of dosage by monitoring the toxicological processes from onset, development and part-recovery. These results were also supported by the conventional clinical biochemical parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alterornonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1) The blades of L. japonica exhibited symptoms of lesion, bleaching and deterioration when infected by the bacterium, and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L. japonica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vein grafting results in the development of intimal hyperplasia with accompanying changes in guanine nucleotide-binding (G) protein expression and function. Several serum mitogens that act through G protein-coupled receptors, such as lysophosphatidic acid, stimulate proliferative pathways that are dependent on the G protein betagamma subunit (Gbetagamma)-mediated activation of p21ras. This study examines the role of Gbetagamma signaling in intimal hyperplasia by targeting a gene encoding a specific Gbetagamma inhibitor in an experimental rabbit vein graft model. This inhibitor, the carboxyl terminus of the beta-adrenergic receptor kinase (betaARK(CT)), contains a Gbetagamma-binding domain. Vein graft intimal hyperplasia was significantly reduced by 37% (P<0.01), and physiological studies demonstrated that the normal alterations in G protein coupling phenotypically seen in this model were blocked by betaARK(CT) treatment. Thus, it appears that Gbetagamma-mediated pathways play a major role in intimal hyperplasia and that targeting inhibitors of Gbetagamma signaling offers novel intraoperative therapeutic modalities to inhibit the development of vein graft intimal hyperplasia and subsequent vein graft failure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Realizaram-se mensurações sérica e urinária de fosfatase ácida prostática (PAP) e antígeno prostático específico (PSA) de 20 cães. Os testes de PAP e PSA foram feitos em um equipamento automatizado, com o uso de kits comerciais para humanos. A média de PAP sérico foi de 0,7U/l e urinário 0,U/l. As médias do PSA sérico e urinário foram 0,005ng/dL e 0,004ng/dl, respectivamente. A determinação do dois biomarcadores in vivo é uma nova opção de diagnóstico na medicina veterinária e os valores obtidos devem ser correlacionados com a lesão morfológica da próstata.