279 resultados para Hypothermia.
Resumo:
The aim of this study was to investigate the usefulness of postmortem biochemical investigations in the diagnosis of fatal hypothermia. 10 cases of fatal hypothermia and 30 control cases were selected. A series of biochemical parameters, such as glucose, acetone, 3-beta-hydroxybutyrate, isopropyl alcohol, free fatty acids, adrenaline, growth hormone, adrenocorticotropic hormone, thyroid-stimulating hormone, cortisol, calcium, magnesium, C-reactive protein, procalcitonin as well as markers of renal and cardiac functions were measured in blood, postmortem serum from femoral blood, urine, vitreous and pericardial fluid. The results suggested that deaths due to hypothermia, especially in free-ethanol cases, are characterized by increased ketone levels in blood and other biological fluids, increased adrenaline concentrations in urine, increased cortisol levels in postmortem serum from femoral blood and increased free cortisol values in urine. Increased or decreased levels of other biological parameters are either the result of terminal metabolic changes or the expression of preexisting diseases and may provide information to elucidate the death process on a case-by-case basis.
Resumo:
BACKGROUND: Postanoxic status epilepticus (PSE) is considered a predictor of fatal outcome and therefore not intensively treated; however, some patients have had favorable outcomes. The aim of this study was to identify favorable predictors for awakening beyond vegetative state in PSE. METHODS: We studied six subjects treated with hypothermia improving beyond vegetative state after cerebral anoxia, despite PSE. They were among a cohort of patients treated for anoxic encephalopathy with therapeutic hypothermia in our institution between October 1999 and May 2006 (retrospectively, 3/107 patients) and June 2006 and May 2008 (prospectively, 3/74 patients). PSE was defined by clinical and EEG criteria. Outcome was assessed according to the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). RESULTS: All improving patients had preserved brainstem reflexes, cortical somatosensory evoked potentials, and reactive EEG background during PSE. Half of them had myoclonic PSE, while three had nonconvulsive PSE. In the prospective arm, 3/28 patients with PSE showed this clinical-electrophysiologic profile; all awoke. Treatments consisted of benzodiazepines, various antiepileptic drugs, and propofol. One subject died of pneumonia in a minimally conscious state, one patient returned to baseline (CPC1), three had moderate impairment (CPC2), and one remained dependent (CPC3). Patients with nonconvulsive PSE showed a better prognosis than subjects with myoclonic PSE (p = 0.042). CONCLUSION: Patients with postanoxic status epilepticus and preserved brainstem reactions, somatosensory evoked potentials, and EEG reactivity may have a favorable outcome if their condition is treated as status epilepticus.
Resumo:
The prognosis of patients who are admitted in a comatose state following successful resuscitation after cardiac arrest remains uncertain. Although the introduction of therapeutic hypothermia (TH) and improvements in post-resuscitation care have significantly increased the number of patients who are discharged home with minimal brain damage, short-term assessment of neurological outcome remains a challenge. The need for early and accurate prognostic predictors is crucial, especially since sedation and TH may alter the neurological examination and delay the recovery of motor response for several days. The development of additional tools, including electrophysiological examinations (electroencephalography and somatosensory evoked potentials), neuroimaging and chemical biomarkers, may help to evaluate the extent of brain injury in these patients. Given the extensive literature existing on this topic and the confounding effects of TH on the strength of these tools in outcome prognostication after cardiac arrest, the aim of this narrative review is to provide a practical approach to post-anoxic brain injury when TH is used. We also discuss when and how these tools could be combined with the neurological examination in a multimodal approach to improve outcome prediction in this population.
Resumo:
The purpose of this study was to assess the diagnostic potential of urinary metanephrines and 3-methoxytyramine compared to urinary catecholamine determination in diagnosing antemortem cold exposure and fatal hypothermia. 83 cases of fatal hypothermia and 144 control cases were included in this study. Catecholamines (adrenaline, noradrenaline and dopamine), metanephrines (metanephrine, normetanephrine) and 3-methoxytyramine were measured in urine collected during autopsy. All tested analytes were significantly higher in hypothermia cases compared to control subjects and displayed a generally satisfying discriminative value, thus indicating urinary catecholamines and their metabolites as reliable markers of cold-related stress and hypothermia related-deaths. Metanephrine and adrenaline had the best discriminative value between hypothermia and control cases compared to other tested analytes, though with different sensitivity and specificity. These can therefore be considered the most suitable markers of cold-related stress.
Resumo:
This study aimed to compare the efficiency of the thermal blanket and thermal mattress in the prevention of hypothermia during surgery. Thirty-eight randomized patients were divided into two groups (G1 – thermal blanket and G2 - thermal mattress). The variables studied were: length of surgery, length of stay in the post-anesthetic care unit, period without using the device after thermal induction, transport time from the operating room to post-anesthetic care unit, intraoperative fluid infusion, surgery size, anesthetic technique, age, body mass index, esophageal, axillary and operating room temperature. In G2, length of surgery and starch infusion longer was higher (both p=0.03), but no hypothermia occurred. During the surgical anesthetic procedure, the axillary temperature was higher at 120 minutes (p=0.04), and esophageal temperature was higher at 120 (p=0.002) and 180 minutes (p=0.03) and at the end of the procedure (p=0.002). The thermal mattress was more effective in preventing hypothermia during surgery.
Resumo:
PURPOSE: EEG and somatosensory evoked potential are highly predictive of poor outcome after cardiac arrest; their accuracy for good recovery is however low. We evaluated whether addition of an automated mismatch negativity-based auditory discrimination paradigm (ADP) to EEG and somatosensory evoked potential improves prediction of awakening. METHODS: EEG and ADP were prospectively recorded in 30 adults during therapeutic hypothermia and in normothermia. We studied the progression of auditory discrimination on single-trial multivariate analyses from therapeutic hypothermia to normothermia, and its correlation to outcome at 3 months, assessed with cerebral performance categories. RESULTS: At 3 months, 18 of 30 patients (60%) survived; 5 had severe neurologic impairment (cerebral performance categories = 3) and 13 had good recovery (cerebral performance categories = 1-2). All 10 subjects showing improvements of auditory discrimination from therapeutic hypothermia to normothermia regained consciousness: ADP was 100% predictive for awakening. The addition of ADP significantly improved mortality prediction (area under the curve, 0.77 for standard model including clinical examination, EEG, somatosensory evoked potential, versus 0.86 after adding ADP, P = 0.02). CONCLUSIONS: This automated ADP significantly improves early coma prognostic accuracy after cardiac arrest and therapeutic hypothermia. The progression of auditory discrimination is strongly predictive of favorable recovery and appears complementary to existing prognosticators of poor outcome. Before routine implementation, validation on larger cohorts is warranted.
Resumo:
OBJECTIVE: To examine the relationship of early serum procalcitonin (PCT) levels with the severity of post-cardiac arrest syndrome (PCAS), long-term neurological recovery and the risk of early-onset infections in patients with coma after cardiac arrest (CA) treated with therapeutic hypothermia (TH). METHODS: A prospective cohort of adult comatose CA patients treated with TH (33°C, for 24h) admitted to the medical/surgical intensive care unit, Lausanne University Hospital, was studied. Serum PCT was measured early after CA, at two time-points (days 1 and 2). The SOFA score was used to quantify the severity of PCAS. Diagnosis of early-onset infections (within the first 7 days of ICU stay) was made after review of clinical, radiological and microbiological data. Neurological recovery at 3 months was assessed with Cerebral Performance Categories (CPC), and was dichotomized as favorable (CPC 1-2) vs. unfavorable (CPC 3-5). RESULTS: From December 2009 to April 2012, 100 patients (median age 64 [interquartile range 55-73] years, median time from collapse to ROSC 20 [11-30]min) were studied. Peak PCT correlated with SOFA score at day 1 (Spearman's R=0.44, p<0.0001) and was associated with neurological recovery at 3 months (peak PCT 1.08 [0.35-4.45]ng/ml in patients with CPC 1-2 vs. 3.07 [0.89-9.99] ng/ml in those with CPC 3-5, p=0.01). Peak PCT did not differ significantly between patients with early-onset vs. no infections (2.14 [0.49-6.74] vs. 1.53 [0.46-5.38]ng/ml, p=0.49). CONCLUSIONS: Early elevations of serum PCT levels correlate with the severity of PCAS and are associated with worse neurological recovery after CA and TH. In contrast, elevated serum PCT did not correlate with early-onset infections in this setting.
Resumo:
OBJECTIVES: Therapeutic hypothermia and pharmacological sedation may influence outcome prediction after cardiac arrest. The use of a multimodal approach, including clinical examination, electroencephalography, somatosensory-evoked potentials, and serum neuron-specific enolase, is recommended; however, no study examined the comparative performance of these predictors or addressed their optimal combination. DESIGN: Prospective cohort study. SETTING: Adult ICU of an academic hospital. PATIENTS: One hundred thirty-four consecutive adults treated with therapeutic hypothermia after cardiac arrest. MEASUREMENTS AND MAIN RESULTS: Variables related to the cardiac arrest (cardiac rhythm, time to return of spontaneous circulation), clinical examination (brainstem reflexes and myoclonus), electroencephalography reactivity during therapeutic hypothermia, somatosensory-evoked potentials, and serum neuron-specific enolase. Models to predict clinical outcome at 3 months (assessed using the Cerebral Performance Categories: 5 = death; 3-5 = poor recovery) were evaluated using ordinal logistic regressions and receiving operator characteristic curves. Seventy-two patients (54%) had a poor outcome (of whom, 62 died), and 62 had a good outcome. Multivariable ordinal logistic regression identified absence of electroencephalography reactivity (p < 0.001), incomplete recovery of brainstem reflexes in normothermia (p = 0.013), and neuron-specific enolase higher than 33 μg/L (p = 0.029), but not somatosensory-evoked potentials, as independent predictors of poor outcome. The combination of clinical examination, electroencephalography reactivity, and neuron-specific enolase yielded the best predictive performance (receiving operator characteristic areas: 0.89 for mortality and 0.88 for poor outcome), with 100% positive predictive value. Addition of somatosensory-evoked potentials to this model did not improve prognostic accuracy. CONCLUSIONS: Combination of clinical examination, electroencephalography reactivity, and serum neuron-specific enolase offers the best outcome predictive performance for prognostication of early postanoxic coma, whereas somatosensory-evoked potentials do not add any complementary information. Although prognostication of poor outcome seems excellent, future studies are needed to further improve prediction of good prognosis, which still remains inaccurate.
Resumo:
Visual analysis of electroencephalography (EEG) background and reactivity during therapeutic hypothermia provides important outcome information, but is time-consuming and not always consistent between reviewers. Automated EEG analysis may help quantify the brain damage. Forty-six comatose patients in therapeutic hypothermia, after cardiac arrest, were included in the study. EEG background was quantified with burst-suppression ratio (BSR) and approximate entropy, both used to monitor anesthesia. Reactivity was detected through change in the power spectrum of signal before and after stimulation. Automatic results obtained almost perfect agreement (discontinuity) to substantial agreement (background reactivity) with a visual score from EEG-certified neurologists. Burst-suppression ratio was more suited to distinguish continuous EEG background from burst-suppression than approximate entropy in this specific population. Automatic EEG background and reactivity measures were significantly related to good and poor outcome. We conclude that quantitative EEG measurements can provide promising information regarding current state of the patient and clinical outcome, but further work is needed before routine application in a clinical setting.
Resumo:
In a recent issue of Critical Care, den Hartog and colleagues show an association between spontaneous hypothermia, defined by an admission body temperature < 35°C, and poor outcome in patients with coma after cardiac arrest (CA) treated with therapeutic hypothermia (TH). Given that TH alters neurological prognostication, studies aiming to identify early markers of injury severity and outcome are welcome, since they may contribute overall to optimize the management of comatose CA patients. This study provides an important message to clinicians involved in post-resuscitation care and raises important questions that need to be taken into account in future studies.
Resumo:
INTRODUCTION: Electroencephalography (EEG) has a central role in the outcome prognostication in subjects with anoxic/hypoxic encephalopathy following a cardiac arrest (CA). Continuous EEG monitoring (cEEG) has been consistently developed and studied; however, its yield as compared to repeated standard EEG (sEEG) is unknown. METHODS: We studied a prospective cohort of comatose adults treated with therapeutic hypothermia (TH) after a CA. cEEG data regarding background activity and epileptiform components were compared to two 20 minute sEEG extracted from the cEEG recording (one during TH, and one in early normothermia). RESULTS: In this cohort, 34 recordings were studied. During TH, the agreement between cEEG and sEEG was 97.1% (95% CI: 84.6 - 99.9%) for background discontinuity and reactivity evaluation, while it was 94.1% (95% CI 80.3 - 99.2%) regarding epileptiform activity. In early normothermia, we did not find any discrepancies. Thus, concordance was very good during TH (kappa 0.83), and optimal during normothermia (kappa=1). The median delay between CA and the first EEG reactivity testing was 18 hours (range: 4.75 - 25) for patients with perfect agreement and 10 hours (range: 5.75 - 10.5) for the three patients in whom there were discordant findings (P=0.02, Wilcoxon). CONCLUSION: Standard intermittent EEG has comparable performance than continuous EEG both for variables important for outcome prognostication (EEG reactivity) and identification of epileptiform transients in this relatively small sample of comatose survivors of CA. This finding has an important practical implication, especially for centers where EEG resources are limited.
Resumo:
INTRODUCTION: Continuous EEG (cEEG) is increasingly used to monitor brain function in neuro-ICU patients. However, its value in patients with coma after cardiac arrest (CA), particularly in the setting of therapeutic hypothermia (TH), is only beginning to be elucidated. The aim of this study was to examine whether cEEG performed during TH may predict outcome. METHODS: From April 2009 to April 2010, we prospectively studied 34 consecutive comatose patients treated with TH after CA who were monitored with cEEG, initiated during hypothermia and maintained after rewarming. EEG background reactivity to painful stimulation was tested. We analyzed the association between cEEG findings and neurologic outcome, assessed at 2 months with the Glasgow-Pittsburgh Cerebral Performance Categories (CPC). RESULTS: Continuous EEG recording was started 12 ± 6 hours after CA and lasted 30 ± 11 hours. Nonreactive cEEG background (12 of 15 (75%) among nonsurvivors versus none of 19 (0) survivors; P < 0.001) and prolonged discontinuous "burst-suppression" activity (11 of 15 (73%) versus none of 19; P < 0.001) were significantly associated with mortality. EEG seizures with absent background reactivity also differed significantly (seven of 15 (47%) versus none of 12 (0); P = 0.001). In patients with nonreactive background or seizures/epileptiform discharges on cEEG, no improvement was seen after TH. Nonreactive cEEG background during TH had a positive predictive value of 100% (95% confidence interval (CI), 74 to 100%) and a false-positive rate of 0 (95% CI, 0 to 18%) for mortality. All survivors had cEEG background reactivity, and the majority of them (14 (74%) of 19) had a favorable outcome (CPC 1 or 2). CONCLUSIONS: Continuous EEG monitoring showing a nonreactive or discontinuous background during TH is strongly associated with unfavorable outcome in patients with coma after CA. These data warrant larger studies to confirm the value of continuous EEG monitoring in predicting prognosis after CA and TH.
Resumo:
Introduction: Clinical examination and electroencephalography study (EEG) have been recommended to predict functional recovery in comatose survivors of cardiac arrest (CA), however their prognostic value in patients treated with induced hypothermia (IH) has not been evaluated. Hypothesis: We aimed to validate the prognostic ability of clinical examination and EEG in predicting outcome of patients with coma after CA treated with IH and sought to derive a score with high predictive value for poor functional outcome in this setting. Methods: We prospectively studied 100 consecutive comatose survivors of CA treated with IH. Repeated neurological examination and EEG were performed early after passive rewarming and off sedation. Mortality was assessed at hospital discharge, and functional outcome at 3 to 6 months with Cerebral Performance Categories (CPC), and was dichotomized as good (CPC 1-2) vs. poor (CPC 3-5). Independent predictors of outcome were identified by multivariable logistic regression and used to assess the prognostic value of a Reproducible Electro-clinical Prognosticators of Outcome Score (REPOS). Results: Patients (20/100) with good outcome had all a reactive EEG background. Incomplete recovery of brainstem reflexes, myoclonus, time to return of spontaneous circulation (ROSC) > 25 min, and unreactive EEG background were all independent predictors of death and severe disability, and were added to construct the REPOS. Using a cut-off of 0 or 1 variables for good vs. 2 to 4 for poor outcome, the REPOS had a positive predictive value of 1.00 (95% CI: 0.92-1.00), a negative predictive value of 0.43 (95% CI: 0.29-0.58) and an accuracy of 0.81 for poor functional recovery at 3 to 6 months. Conclusions: In comatose survivors of CA treated with IH, a prognostic score, including clinical and EEG examination, was highly predictive of death and poor functional outcome at 3 to 6 months. Lack of EEG background reactivity strongly predicted poor neurological recovery after CA. Our findings show that clinical and electrophysiological studies are effective in predicting long-term outcome of comatose survivors after CA and IH, and suggest that EEG improves early prognostic assessment in the setting of therapeutic cooling.
Resumo:
BACKGROUND: Deep hypothermia has been associated with an increased incidence of postoperative neurologic dysfunction after cardiac surgery in children. Recent studies suggest an excitotoxic mechanism involving overstimulation of glutamate receptors. Extracellular glutamate uptake occurs primarily by astrocytes. Astrocytes also store glycogen, which may be used to sustain the energy-consuming glutamate uptake. Extracellular glutamate and glycogen content were studied during temperature changes mimicking cardiopulmonary bypass in vivo. METHODS: Primary cultures of cerebral cortical astrocytes were used in a specially designed incubator allowing continuous changes of temperature and ambient gas concentrations. The sequence of events was as follows: normothermia, rapid cooling (2.8 degrees C/min) followed by 60 min of deep hypothermia (15 degrees C), followed by rewarming (3.0 degrees C/min) and subsequent 5 h of mild hyperthermia (38.5 degrees C). Two different conditions of oxygenation were studied: (1) normoxia (25% O2, 70% N2, 5% CO2); or (2) hyperoxia (95% O2, 5% CO2). The extracellular glutamate concentrations and intracellular glycogen levels were measured at nine time points. RESULTS: One hundred sixty-two cultures were studied in four independent experiments. The extracellular concentration of glutamate in the normoxic group increased significantly from 35+/-10 nM/mg protein at baseline up to 100+/-15 nM/mg protein at the end of 5 h of mild hyperthermia (P < 0.05). In contrast, extracellular glutamate levels did not vary from control in the hyperoxic group. Glycogen levels decreased significantly from 260+/-85 nM/mg protein at baseline to < 25+/-5 nM/mg protein at the end of 5 h in the normoxic group (P < 0.05) but returned to control levels after rewarming in the hyperoxic group. No morphologic changes were observed in either group. CONCLUSION: The extracellular concentration of glutamate increases, whereas the intracellular glycogen content decreases when astrocytes are exposed to a sequence of deep hypothermia and rewarming. This effect of hypothermia is prevented when astrocytes are exposed to hyperoxic conditions.