26 resultados para Hyperaccumulation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elevation of arsenic levels in soils causes considerable concern with respect to plant uptake and subsequent entry into wildlife and human food chains, Arsenic speciation in the environment is complex, existing in both inorganic and organic forms, with interconversion between species regulated by biotic and abiotic processes. To understand and manage the risks posed by soil arsenic it is essential to know how arsenic is taken up by the roots and metabolized within plants. Some plant species exhibit phenotypic variation in response to arsenic species, which helps us to understand the toxicity of arsenic and the way in which plants have evolved arsenic resistances. This knowledge, for example, could be used produce plant cultivars that are more arsenic resistant or that have reduced arsenic uptake. This review synthesizes current knowledge on arsenic uptake, metabolism and toxicity for arsenic resistant and nonresistant plants, including the recently discovered phenomenon of arsenic hyperaccumulation in certain fern species. The reasons why plants accumulate and metabolize arsenic are considered in an evolutionary context. © New Phytologist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Whole-genome transcriptome profiling is revealing how biological systems are regulated at the transcriptional level. This study reports the development of a robust method to profile and compare the transcriptomes of two nonmodel plant species, Thlaspi caerulescens, a zinc (Zn) hyperaccumulator, and Thlaspi arvense, a nonhyperaccumulator, using Affymetrix Arabidopsis thaliana ATH1-121501 GeneChip (R) arrays (Affymetrix, Santa Clara, CA, USA). Transcript abundance was quantified in the shoots of agar- and compost-grown plants of both species. Analyses were optimized using a genomic DNA (gDNA)-based probe-selection strategy based on the hybridization efficiency of Thlaspi gDNA with corresponding A. thaliana probes. In silico alignments of GeneChip (R) probes with Thlaspi gene sequences, and quantitative real-time PCR, confirmed the validity of this approach. Approximately 5000 genes were differentially expressed in the shoots of T. caerulescens compared with T. arvense, including genes involved in Zn transport and compartmentalization. Future functional analyses of genes identified as differentially expressed in the shoots of these closely related species will improve our understanding of the molecular mechanisms of Zn hyperaccumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zinc (Zn) and cadmium (Cd) hyperaccumulation may have evolved twice in the Brassicaceae, in Arabidopsis halleri and in the Noccaea genus. Tandem gene duplication and deregulated expression of the Zn transporter, HMA4, has previously been linked to Zn/Cd hyperaccumulation in A. halleri. Here, we tested the hypothesis that tandem duplication and deregulation of HMA4 expression also occurs in Noccaea. A Noccaea caerulescens genomic library was generated, containing 36,864 fosmid pCC1FOS (TM) clones with insert sizes similar to 20-40 kbp, and screened with a PCR-generated HMA4 genomic probe. Gene copy number within the genome was estimated through DNA fingerprinting and pooled fosmid pyrosequencing. Gene copy numbers within individual clones was determined by PCR analyses with novel locus specific primers. Entire fosmids were then sequenced individually and reads equivalent to 20-fold coverage were assembled to generate complete whole contigs. Four tandem HMA4 repeats were identified in a contiguous sequence of 101,480 bp based on sequence overlap identities. These were flanked by regions syntenous with up and downstream regions of AtHMA4 in Arabidopsis thaliana. Promoter-reporter beta-glucuronidase (GUS) fusion analysis of a NcHMA4 in A. thaliana revealed deregulated expression in roots and shoots, analogous to AhHMA4 promoters, but distinct from AtHMA4 expression which localised to the root vascular tissue. This remarkable consistency in tandem duplication and deregulated expression of metal transport genes between N. caerulescens and A. halleri, which last shared a common ancestor > 40 mya, provides intriguing evidence that parallel evolutionary pathways may underlie Zn/Cd hyperaccumulation in Brassicaceae.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Elemental imaging using laser ablation inductively coupled plasma mass spectrometry was performed on whole leaves of the hyperaccumulating plant Noccaea caerulescens after treatments with either Ni, Zn or Cd. These detailed elemental images reveal differences in the spatial distribution of these three elements across the leaf and provide new insights in the metal ion homeostasis within hyperaccumulating plants. In the Zn treated plants, Zn accumulated in the leaf tip while Mn was co-localised with Zn suggesting similar storage mechanisms for these two metals. These data show a Zn concentration difference of up to 13-fold higher in the distal part of the leaf. Also, there was no correlation between the S and Zn concentrations providing further evidence against S-binding ligands. In contrast, Ni was more evenly distributed while a more heterogeneous distribution of Cd was present with some high levels on leaf edges, suggesting that different storage and transport mechanisms are used for the hyperaccumulation of these two metals. These results show the importance of correct sampling when carrying out subcellular localisation studies as the hyperaccumulated elements are not necessarily homogenously distributed over the entire leaf area. The results also have great implications for biotechnological applications of N. caerulescens showing that it may be possible to use the mechanisms employed by N. caerulescens to increase the Zn concentration in nutrient poor crops without increasing the risk of accumulating other toxic elements such as Ni and Cd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography–mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and l-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Leaf material from nine Ni hyperaccumulating species was collected in New Caledonia: Homalium kanaliense (Vieill.) Briq., Casearia silvana Schltr, Geissois hirsuta Brongn. & Gris, Hybanthus austrocaledonicusSeem, Psychotria douarrei (G. Beauvis.) Däniker, Pycnandra acuminata (Pierre ex Baill.) Swenson & Munzinger (syn Sebertia acuminata Pierre ex Baill.), Geissois pruinosa Brongn. & Gris, Homalium deplanchei (Viell) Warb. and Geissois bradfordii (H.C. Hopkins). The elemental concentration was determined by inductively-coupled plasma optical emission spectrometry (ICP-OES) and from these results it was foundthat the species contained Ni concentrations from to 250–28,000 mg/kg dry mass. Gas chromatography mass spectrometry (GC–MS)-based metabolite profiling was then used to analyse leaves of each species.The aim of this study was to target Ni-binding ligands through correlation analysis of the metabolite levels and leaf Ni concentration. Approximately 258 compounds were detected in each sample. As has been observed before, a correlation was found between the citric acid and Ni concentrations in the leaves for all species collected. However, the strongest Ni accumulator, P. douarrei, has been found to contain particularly high concentrations of malonic acid, suggesting an additional storage mechanism for Ni. A size exclusion chromatography separation protocol for the separation of Ni-complexes in P. acuminata sap was also applied to aqueous leaf extracts of each species. A number of metabolites were identified in complexes with Ni including Ni-malonate from P. douarrei. Furthermore, the levels for some metabolites were found to correlate with the leaf Ni concentration. These data show that Ni ions can be bound by a range of small molecules in Ni hyperaccumulation in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The availability of chemical elements for plants is mainly dependent on the nature of the soil and characteristics of each species. The transfer factors of lanthanides from the soil to the tree leaves of the Atlantic Forest, Brazil, were calculated for one fern species (Alsophila sternbergii-Pteridophyta division) and four magnoliophytes species (Bathysa australis, Euterpe edulis, Garcinia gardneriana and Guapira opposita-Magnoliophyta division) obtained in two areas of Serra do Mar State Park and collected in two different seasons. Samples were analyzed by instrumental neutron activation analysis (INAA). The soil-to-plant transfer factor (TF = C(plant):C(soil)) in magnoliophytes species was correlated to the mass fraction of lanthanides in the soil, described by a exponential model (TF = a.C (soil) (-b) ). Despite the tree fern Alsophila sternbergii presented a hyperaccumulation of lanthanides, this species did not have a significant relationship between TF and mass fraction in soil. Results indicated that plants of Magnoliophyta division selected the input of lanthanides from the soil, while the same was not observed in Alsophila sternbergii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Approximately 0.2 % of all angiosperms are classified as metal hyperaccumulators based on their extraordinarily high leaf metal contents, for example >1 % zinc, >0.1 % nickel or >0.01 % cadmium (Cd) in dry biomass. So far, metal hyperaccumulation has been considered to be a taxon-wide, constitutively expressed trait, the extent of which depends solely on available metal concentrations in the soil. Here we show that in the facultative metallophyte Arabidopsis halleri, both insect herbivory and mechanical wounding of leaves trigger an increase specifically in leaf Cd accumulation. Moreover, the Cd concentrations accumulated in leaves can serve as an elemental defense against herbivory by larvae of the Brassicaceae specialist small white (Pieris rapae), thus allowing the plant to take advantage of this non-essential trace element and toxin. Metal homeostasis genes are overrepresented in the systemic transcriptional response of roots to the wounding of leaves in A. halleri, supporting that leaf Cd accumulation is preceded by systemic signaling events. A similar, but quantitatively less pronounced transcriptional response was observed in A. thaliana, suggesting that the systemically regulated modulation of metal homeostasis in response to leaf wounding also occurs in non-hyperaccumulator plants. This is the first report of an environmental stimulus influencing metal hyperaccumulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The yeast Saccharomyces cerevisiae contains two genes, PDE1 and PDE2, which respectively encode a low-affinity and a high-affinity cAMP phosphodiesterase. The physiological function of the low-affinity enzyme Pde1 is unclear. We show that deletion of PDE1, but not PDE2, results in a much higher cAMP accumulation upon addition of glucose or upon intracellular acidification. Overexpression of PDE1, but not PDE2, abolished the agonist-induced cAMP increases. These results indicate a specific role for Pde1 in controlling glucose and intracellular acidification-induced cAMP signaling. Elimination of a putative protein kinase A (PKA) phosphorylation site by mutagenesis of serine252 into alanine resulted in a Pde1ala252 allele that apparently had reduced activity in vivo. Its presence in a wild-type strain partially enhanced the agonist-induced cAMP increases compared with pde1Δ. The difference between the Pde1ala252 allele and wild-type Pde1 was strongly dependent on PKA activity. In a RAS2val19 pde2Δ background, the Pde1ala252 allele caused nearly the same hyperaccumulation of cAMP as pde1Δ, while its expression in a PKA-attenuated strain caused the same reduction in cAMP hyperaccumulation as wild-type Pde1. These results suggest that serine252 might be the first target site for feedback inhibition of cAMP accumulation by PKA. We show that Pde1 is rapidly phosphorylated in vivo upon addition of glucose to glycerol-grown cells, and this activation is absent in the Pde1ala252 mutant. Pde1 belongs to a separate class of phosphodiesterases and is the first member shown to be phosphorylated. However, in vitro the Pde1ala252 enzyme had the same catalytic activity as wild-type Pde1, both in crude extracts and after extensive purification. This indicates that the effects of the S252A mutation are not caused by simple inactivation of the enzyme. In vitro phosphorylation of Pde1 resulted in a modest and variable increase in activity, but only in crude extracts. This was absent in Pde1ala252, and phosphate incorporation was strongly reduced. Apparently, phosphorylation of Pde1 does not change its intrinsic activity or affinity for cAMP but appears to be important in vivo for protein-protein interaction or for targeting Pde1 to a specific subcellular location. The PKA recognition site is conserved in the corresponding region of the Schizosaccharomyces pombe and Candida albicans Pde1 homologues, possibly indicating a similar control by phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyzed transgenic tobacco (Nicotiana tabacum L.) expressing Stpd1, a cDNA encoding sorbitol-6-phosphate dehydrogenase from apple, under the control of a cauliflower mosaic virus 35S promoter. In 125 independent transformants variable amounts of sorbitol ranging from 0.2 to 130 μmol g−1 fresh weight were found. Plants that accumulated up to 2 to 3 μmol g−1 fresh weight sorbitol were phenotypically normal, with successively slower growth as sorbitol amounts increased. Plants accumulating sorbitol at 3 to 5 μmol g−1 fresh weight occasionally showed regions in which chlorophyll was partially lost, but at higher sorbitol amounts young leaves of all plants lost chlorophyll in irregular spots that developed into necrotic lesions. When sorbitol exceeded 15 to 20 μmol g−1 fresh weight, plants were infertile, and at even higher sorbitol concentrations the primary regenerants were incapable of forming roots in culture or soil. In mature plants sorbitol amounts varied with age, leaf position, and growth conditions. The appearance of lesions was correlated with high sorbitol, glucose, fructose, and starch, and low myo-inositol. Supplementing myo-inositol in seedlings and young plants prevented lesion formation. Hyperaccumulation of sorbitol, which interferes with inositol biosynthesis, seems to lead to osmotic imbalance, possibly acting as a signal affecting carbohydrate allocation and transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pteris vittata, the first reported arsenic hyperaccumulating plant, is potentially used in phytoremediation of arsenic, as it can accumulate up to 2.3% of arsenic in its fronds. In this study, the mechanisms of arsenic tolerance, uptake and transformation were studied in the plant. Arsenic species were analyzed by HPLC-AFS. Results showed that arsenic was mainly accumulated in leaflets, and inorganic arsenate and arsenite were only species in P. vittata. Arsenite was the predominant species in leaflets, whereas arsenate was the predominant species in roots. Arsenic induced the synthesis of thiol containing compounds in P. vittata. As-induced thiol was purified by a novel method: covalent chromatography following preparative HPLC. The purified thiol was characterized as a phytochelatin with two units (PC2). ^ In P. vittata, enhanced tolerance likely results from unusual intracellular detoxification mechanisms. Although PC-dependent sequestration of arsenic into vacuoles is essential for nonhyperaccumulators, this sequestration is not the major arsenic tolerance mechanisms in this arsenic hyperaccumulator. PC-independent sequestration of arsenic is likely the major arsenic tolerance mechanism. PC-dependent arsenic detoxification is probably a supplement to this major mechanism. ^ Interactions between arsenic and phosphate were studied. Under hydroponic condition, arsenic supply decreased the concentrations of phosphate in roots. In soil, arsenic increased the concentrations of phosphate in roots. Arsenic concentrations in rachises and leaflets were not affected by arsenic supply in either hydroponic or soil system. Phosphate decreased arsenic accumulation in roots, rachises and leaflets in the hydroponic system. ^ The uptake kinetics of arsenate, arsenite, monomethyl arsinic acid (MMA), dimethyl arsonic acid, and phosphate were studied in P. vittata. Phosphate uptake systems in Pteris vittata cannot distinguish phosphate and As(V), resulting in As hyperaccumulation. Arsenic hyperaccumulation in this plant is an inevitable consequence during phosphate acquisition. Arsenate, arsenite and MMA are transported via the phosphate uptake systems. The co-transport of arsenite/phosphate and MMA/phosphate is reported for the first time in plants. These unique phenomena are useful for understanding arsenic hyperaccumulation and the evolution of this capacity in P. vittata. ^