957 resultados para Hydrothermal aging


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aging in humans is associated with a loss in neuromuscular function and performance. This is related, in part, to the reduction in muscular strength and power caused by a loss of skeletal muscle mass (sarcopenia) and changes in muscle architecture. Due to these changes, the force-velocity (f-v) relationship of human muscles alters with age. This change has functional implications such as slower walking speeds. Different methods to reverse these changes have been investigated, including traditional resistance training, power training and eccentric (or eccentrically-biased) resistance training. This review will summarise the changes of the f-v relationship with age, the functional implications of these changes and the various methods to reverse or at least partly ameliorate these changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

College students (N = 3,435) in 26 cultures reported their perceptions of age-related changes in physical, cognitive, and socioemotional areas of functioning and rated societal views of aging within their culture. There was widespread cross-cultural consensus regarding the expected direction of aging trajectories with (1) perceived declines in societal views of aging, physical attractiveness, the ability to perform everyday tasks, and new learning, (2) perceived increases in wisdom, knowledge, and received respect, and (3) perceived stability in family authority and life satisfaction. Cross-cultural variations in aging perceptions were associated with culture-level indicators of population aging, education levels, values, and national character stereotypes. These associations were stronger for societal views on aging and perceptions of socioemotional changes than for perceptions of physical and cognitive changes. A consideration of culture-level variables also suggested that previously reported differences in aging perceptions between Asian and Western countries may be related to differences in population structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to investigate the factors that influence midlife women to make positive exercise and dietary changes. In late 2005 questionnaires were mailed to 866 women aged 51–66 years from rural and urban locations in Queensland, Australia and participating in Stage 2 of the Healthy Aging of Women Study. The questionnaires sought data on socio-demographics, body mass index (BMI), chronic health conditions, self-efficacy, exercise and dietary behavior change since age 40, and health-related quality of life. Five hundred and sixty four (69%) were completed and returned by early 2006. Data analysis comprised descriptive and bivariate statistics and structural equation modeling. The results showed that midlife is a significant time for women to make positive health behavior changes. Approximately one-third of the sample (34.6%) indicated that they had increased their exercise and around 60% had made an effort to eat more healthily since age 40. Modeling showed self-efficacy to be important in making both exercise and dietary changes. Although education appeared to influence self-efficacy in relation to exercise change, this was not the case for dietary change. The study has application for programs promoting healthy aging among women, and implies that those with low education, high BMI and poor mental health may need considerable support to improve their lifestyles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the temporal relationship between lifestyle and mental health among 564 midlife women. The mental health measured included anxiety, depression, and mental well-being; the lifestyle measures included body mass index (BMI), exercise, smoking, alcohol use, and caffeine consumption. We found that BMI was positively related with mental well-being (r = .316, p = .009); smokers had lower mental well-being than nonsmokers (β = 6.725, p = .006), and noncaffeine drinkers had higher mental well-being (β = 5, p = .023). Past alcohol-drinkers had less anxiety than nondrinkers (β = 1.135, p = .04). Therefore, lifestyle is predictive of mental health among midlife and older women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its initial proposal in 1998, alkaline hydrothermal processing has rapidly become an established technology for the production of titanate nanostructures. This simple, highly reproducible process has gained a strong research following since its conception. However, complete understanding and elucidation of nanostructure phase and formation have not yet been achieved. Without fully understanding phase, formation, and other important competing effects of the synthesis parameters on the final structure, the maximum potential of these nanostructures cannot be obtained. Therefore this study examined the influence of synthesis parameters on the formation of titanate nanostructures produced by alkaline hydrothermal treatment. The parameters included alkaline concentration, hydrothermal temperature, the precursor material‘s crystallite size and also the phase of the titanium dioxide precursor (TiO2, or titania). The nanostructure‘s phase and morphology was analysed using X-ray diffraction (XRD), Raman spectroscopy and transmission electron microscopy. X-ray photoelectron spectroscopy (XPS), dynamic light scattering (non-invasive backscattering), nitrogen sorption, and Rietveld analysis were used to determine phase, for particle sizing, surface area determinations, and establishing phase concentrations, respectively. This project rigorously examined the effect of alkaline concentration and hydrothermal temperature on three commercially sourced and two self-prepared TiO2 powders. These precursors consisted of both pure- or mixed-phase anatase and rutile polymorphs, and were selected to cover a range of phase concentrations and crystallite sizes. Typically, these precursors were treated with 5–10 M sodium hydroxide (NaOH) solutions at temperatures between 100–220 °C. Both nanotube and nanoribbon morphologies could be produced depending on the combination of these hydrothermal conditions. Both titania and titanate phases are comprised of TiO6 units which are assembled in different combinations. The arrangement of these atoms affects the binding energy between the Ti–O bonds. Raman spectroscopy and XPS were therefore employed in a preliminary study of phase determination for these materials. The change in binding energy from a titania to a titanate binding energy was investigated in this study, and the transformation of titania precursor into nanotubes and titanate nanoribbons was directly observed by these methods. Evaluation of the Raman and XPS results indicated a strengthening in the binding energies of both the Ti (2p3/2) and O (1s) bands which correlated to an increase in strength and decrease in resolution of the characteristic nanotube doublet observed between 320 and 220 cm.1 in the Raman spectra of these products. The effect of phase and crystallite size on nanotube formation was examined over a series of temperatures (100.200 �‹C in 20 �‹C increments) at a set alkaline concentration (7.5 M NaOH). These parameters were investigated by employing both pure- and mixed- phase precursors of anatase and rutile. This study indicated that both the crystallite size and phase affect nanotube formation, with rutile requiring a greater driving force (essentially �\harsher. hydrothermal conditions) than anatase to form nanotubes, where larger crystallites forms of the precursor also appeared to impede nanotube formation slightly. These parameters were further examined in later studies. The influence of alkaline concentration and hydrothermal temperature were systematically examined for the transformation of Degussa P25 into nanotubes and nanoribbons, and exact conditions for nanostructure synthesis were determined. Correlation of these data sets resulted in the construction of a morphological phase diagram, which is an effective reference for nanostructure formation. This morphological phase diagram effectively provides a .recipe book�e for the formation of titanate nanostructures. Morphological phase diagrams were also constructed for larger, near phase-pure anatase and rutile precursors, to further investigate the influence of hydrothermal reaction parameters on the formation of titanate nanotubes and nanoribbons. The effects of alkaline concentration, hydrothermal temperature, crystallite phase and size are observed when the three morphological phase diagrams are compared. Through the analysis of these results it was determined that alkaline concentration and hydrothermal temperature affect nanotube and nanoribbon formation independently through a complex relationship, where nanotubes are primarily affected by temperature, whilst nanoribbons are strongly influenced by alkaline concentration. Crystallite size and phase also affected the nanostructure formation. Smaller precursor crystallites formed nanostructures at reduced hydrothermal temperature, and rutile displayed a slower rate of precursor consumption compared to anatase, with incomplete conversion observed for most hydrothermal conditions. The incomplete conversion of rutile into nanotubes was examined in detail in the final study. This study selectively examined the kinetics of precursor dissolution in order to understand why rutile incompletely converted. This was achieved by selecting a single hydrothermal condition (9 M NaOH, 160 °C) where nanotubes are known to form from both anatase and rutile, where the synthesis was quenched after 2, 4, 8, 16 and 32 hours. The influence of precursor phase on nanostructure formation was explicitly determined to be due to different dissolution kinetics; where anatase exhibited zero-order dissolution and rutile second-order. This difference in kinetic order cannot be simply explained by the variation in crystallite size, as the inherent surface areas of the two precursors were determined to have first-order relationships with time. Therefore, the crystallite size (and inherent surface area) does not affect the overall kinetic order of dissolution; rather, it determines the rate of reaction. Finally, nanostructure formation was found to be controlled by the availability of dissolved titanium (Ti4+) species in solution, which is mediated by the dissolution kinetics of the precursor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reviews the methods used in cross-cultural studies of menopausal symptoms with the goal of formulating recommendations to facilitate comparisons of menopausal symptoms across cultures. It provides an overview of existing approaches and serves to introduce four separate reviews of vasomotor, psychological, somatic, and sexual symptoms at midlife. Building on an earlier review of cross-cultural studies of menopause covering time periods until 2004, these reviews are based on searches of Medline, PsycINFO, CINAHL and Google Scholar for English-language articles published from 2004 to 2010 using the terms “cross cultural comparison” and “menopause.” Two major criteria were used: a study had to include more than one culture, country, or ethnic group and to have asked about actual menopausal symptom experience. We found considerable variation across studies in age ranges, symptom lists, reference period for symptom recall, variables included in multivariate analyses, and the measurement of factors (e.g., menopausal status and hormonal factors, demographic, anthropometric, mental/physical health, and lifestyle measures) that influence vasomotor, psychological, somatic and sexual symptoms. Based on these reviews, we make recommendations for future research regarding age range, symptom lists, reference/recall periods, and measurement of menopausal status. Recommendations specific to the cross-cultural study of vasomotor, psychological, somatic, and sexual symptoms are found in the four reviews that follow this introduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zeolite N, an EDI type framework structure with ideal chemical formula K12Al10Si10O40Cl2•5H2O, was produced from kaolin between 100oC and 200oC in a continuously stirred reactor using potassic and potassic+sodic liquors containing a range of anions. Reactions using liquors such as KOH, KOH + KX (where X = F, Cl, Br, I, NO3, NO2), K2X (where X=CO3), KOH + NaCl or NaOH + KCl were complete (>95% product) in less than two hours depending on the batch composition and temperature of reaction. With KOH and KCl in the reaction mixture and H2O/Al2O3~49, zeolite N was formed over a range of concentrations (1M < [KOH] < 18M) and reaction times (0.5h < t < 60h). At higher temperatures or higher KOH molarity, other potassic phases such as kalsilite or kaliophyllite formed. In general, temperature and KOH molarity defined the extent of zeolite N formation under these conditions. The introduction of sodic reagents to the starting mixture or use of one potassic reagent in the starting mixture reduced the stability field for zeolite N formation. Zeolite N was also formed using zeolite 4A as a source of Al and Si albeit for longer reaction times at a particular temperature when compared with kaolin as the source material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strontium titanate nanocubes with an average edge length of 150mm have been successfully synthesized from a simple hydrothermal system. Characterization techniques such as X-ray powder diffraction analysis, scanning electron microscopy and energy-dispersive analysis of X-rays were used to investigate the products. The results showed that as-prepared powders are pure SrTiO3 with cubic shape, which consists with the growth habit of its intrinsic crystal structure. These uniform nanocubes with high crystallinity will exhibit superior physical properties in the practical applications. Furthermore, during the experimental process, it has been found that the dilute acid washing process is very important to obtain high pure SrTiO3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vernier acuity, a form of visual hyperacuity, is amongst the most precise forms of spatial vision. Under optimal conditions Vernier thresholds are much finer than the inter-photoreceptor distance. Achievement of such high precision is based substantially on cortical computations, most likely in the primary visual cortex. Using stimuli with added positional noise, we show that Vernier processing is reduced with advancing age across a wide range of noise levels. Using an ideal observer model, we are able to characterize the mechanisms underlying age-related loss, and show that the reduction in Vernier acuity can be mainly attributed to the reduction in efficiency of sampling, with no significant change in the level of internal position noise, or spatial distortion, in the visual system.