969 resultados para Hydrogen-sulfide


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of H2S as a physiological signaling molecule continues to develop, and ion channels are emerging as a major family of target proteins through which H2S exerts many actions. The purpose of the present study was to investigate its effects on T-type Ca2+ channels. Using patch-clamp electrophysiology, we demonstrate that the H2S donor, NaHS (10 μM-1 mM) selectively inhibits Cav3.2 T-type channels heterologously expressed in HEK293 cells, whereas Cav3.1 and Cav3.3 channels were unaffected. The sensitivity of Cav3.2 channels to H2S required the presence of the redox-sensitive extracellular residue H191, which is also required for tonic binding of Zn2+ to this channel. Chelation of Zn2+ with N,N,N',N'-tetra-2-picolylethylenediamine prevented channel inhibition by H2S and also reversed H2S inhibition when applied after H2S exposure, suggesting that H2S may act via increasing the affinity of the channel for extracellular Zn2+ binding. Inhibition of native T-type channels in 3 cell lines correlated with expression of Cav3.2 and not Cav3.1 channels. Notably, H2S also inhibited native T-type (primarily Cav3.2) channels in sensory dorsal root ganglion neurons. Our data demonstrate a novel target for H2S regulation, the T-type Ca2+ channel Cav3.2, and suggest that such modulation cannot account for the pronociceptive effects of this gasotransmitter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of a polymer electrolyte membrane fuel cell (PEMFC) operating on a simulated hydrocarbon reformate is described. The anode feed stream consisted of 80% H(2),similar to 20% N(2), and 8 ppm hydrogen sulfide (H(2)S). Cell performance losses are calculated by evaluating cell potential reduction due to H(2)S contamination through lifetime tests. It is found that potential, or power, loss under this condition is a result of platinum surface contamination with elemental sulfur. Electrochemical mass spectroscopy (EMS) and electrochemical techniques are employed, in order to show that elemental sulfur is adsorbed onto platinum, and that sulfur dioxide is one of the oxidation products. Moreover, it is demonstrated that a possible approach for mitigating H(2)S poisoning on the PEMFC anode catalyst is to inject low levels of air into the H(2)S-contaminated anode feeding stream. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The systems based on granular mesoporous nanofibrous carbonaceous (NFC) materials synthesized by decomposition of hydrocarbons over nickel- containing catalysts are promising catalysts for selective oxidation of hydrogen sulfide. Sample series of nanofibrous carbon with three main types of their fiber structures and different contents of metal catalysts inherited from the catalysts for their synthesis were studied in this reaction. The correlation between NFC structure and its activity and selectivity in hydrogen sulfide oxidation was determined. The metal inherited from the initial catalysts for the synthesis of NFC influences the activity and selectivity of the resulting carbon catalysts. A particular influence is observed in the case of the catalyst withdrawn from the synthesis reactor at the stage of stationary operation of the metal catalyst (low specific carbon yields per unit weight of the catalyst). The presence of the metal phase results in an increase in the carbon catalyst activity and in a decrease in the selectivity to sulfur. NFC samples with the highest activity and selectivity are nanotubes and those with graphite planes perpendicular to the axis of the fibers. Carbon nanotubes have high selectivity, while samples obtained on copper–nickel catalysts also possess high activity. The promising NFC catalysts provide high conversion and selectivity (almost independent of the molar oxygen/hydrogen sulfide ratio) when a large excess of oxygen is contained in the reaction mixture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND : Hydrogen sulfide (H(2)S) displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2)S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2)S in carbon tetrachloride (CCl(4))-induced hepatotoxicity, cirrhosis and portal hypertension.

METHODS AND FINDINGS : Sodium hydrosulfide (NaHS), a donor of H(2)S, and DL-propargylglycine (PAG), an irreversible inhibitor of cystathionine γ-lyase (CSE), were applied to the rats to investigate the effects of H(2)S on CCl(4)-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2)S, hepatic H(2)S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP) 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4) significantly reduced serum levels of H(2)S, hepatic H(2)S production and CSE expression. NaHS attenuated CCl(4)-induced acute hepatotoxicity by supplementing exogenous H(2)S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), albumin, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and soluble intercellular adhesion molecule (ICAM)-1, liver histology, hepatic hydroxyproline content and α-smooth muscle actin (SMA) expression. PAG showed opposing effects to NaHS on most of the above parameters.

CONCLUSIONS :  Exogenous H2S attenuates CCl4-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H2S may present a promising approach, particularly for its prophylactic effects, against liver cirrhosis and portal hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen sulfide (H2S) has been proposed to mediate hypoxic vasoconstriction (HVC), however, other studies suggest the vasoconstrictory effect indirectly results from an oxidation product of H2S. Here we examined the relationship between H2S and O2 in isolated hagfish and lamprey vessels that exhibit profound hypoxic vasoconstriction. In myographic studies, H2S (Na2S) dose-dependently constricted dorsal aortas (DA) and efferent branchial arteries (EBA) but did not affect ventral aortas or afferent branchial arteries; effects similar to those produced by hypoxia. Sensitivity of H2S-mediated contraction in hagfish and lamprey DA was enhanced by hypoxia. HVC in hagfish DA was enhanced by the H2S precursor cysteine and inhibited by amino-oxyacetate, an inhibitor of the H2S-synthesizing enzyme, cystathionine β-synthase. HVC was unaffected by propargyl glycine, an inhibitor of cystathionine λ-lyase. Oxygen consumption (ṀO2) of hagfish DA was constant between 15 and 115 mmHg PO2 (1 mmHg=0.133 kPa), decreased when PO2 <15 mmHg, and increased after PO2 exceeded 115 mmHg. 10 μmol l–1 H2S increased and ⩾100μ mol l–1 H2S decreased ṀO2. Consistent with the effects on HVC, cysteine increased and amino-oxyacetate decreased O2. These results show that H2S is a monophasic vasoconstrictor of specific cyclostome vessels and because hagfish lack vascular NO, and vascular sensitivity to H2S was enhanced at low PO2, it is unlikely that H2S contractions are mediated by either H2S–NO interaction or an oxidation product of H2S. These experiments also provide additional support for the hypothesis that the metabolism of H2S is involved in oxygen sensing/signal transduction in vertebrate vascular smooth muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen Sulfide (H(2)S) a volatile Sulfur compound, is implicated as a cause of inflammation. especially when it is produced by bacteria colonizing gastrointestinal organs However, It IS Unclear if H(2)S produced by periodontal pathogens affects the inflammatory responses mediated by oral/gingival epithelial cells Therefore. the aims of this Study were (1) to compare the in vitro production of H(2)S among. 14 strains of Oral bacteria and (2) to evaluate the effects of H(2)S on inflammatory response induced in host oral/gingival epithelial cells Porphyromonas gingivalis (Pg) produced the most H(2)S in Culture, Which, in turn resulted in the promotion of proinflammatory cytokine IL-8 from both gingival and Oral epithelial cells The up-regulation of IL-8 expression was reproduced by the exogenously applied H(2)S Furthermore. the Mutant Strains of Pg that do not produce major Soluble Virulent factors. ie gingival, still showed the Production of H(2)S. as well as the promotion of epithelial IL-8 production. which was abrogated by H(2)S scavenging reagents These results demonstrated that Pg produces a concentration of H(2)S capable of Up-regulating-IL-8 expression induced in gingival and oral epithelial cells, revealing a possible mechanism that may promote the inflammation in periodontal disease (C) 2009 Elsevier B.V. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fluorometric technique based on a liquid drop excited from its interior by an optical fiber is described for the measurement of low concentrations of atmospheric hydrogen sulfide (H2S). A drop of alkaline fluorescein mercuric acetate (FMA) solution is suspended in a flowing air sample stream and serves as a renewable sensor. An optical fiber contained within the conduit that forms the drop, brings in the excitation beam; the fluorescence emission is measured by an inexpensive photodiode positioned close to the drop. As H2S in the sample is collected by the alkaline drop, it reacts rapidly with FMA resulting in a significant decrease in fluorescence intensity, proportional to the concentration of H2S sampled. The chemistry of this uniquely selective reaction has been well established for many years, the present technique permits a simple fast inexpensive near real-time measurement with very little reagent consumption. Even without prolonged sampling/preconcentration steps, limits of detection (LODs) in the double digit ppbv range is readily attainable. (C) 1997 Elsevier B.V. B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hypoxia causes a regulated decrease in body temperature (Tb), a response that has been aptly called anapyrexia, but the mechanisms involved are not completely understood. The roles played by nitric oxide (NO) and other neurotransmitters have been documented during hypoxia-induced anapyrexia, but no information exists with respect to hydrogen sulfide (H(2)S), a gaseous molecule endogenously produced by cystathionine beta-synthase (CBS). We tested the hypothesis that HA production is enhanced during hypoxia and that the gas acts in the anteroventral preoptic region (AVPO; the most important thermosensitive and thermointegrative region of the CNS) modulating hypoxia-induced anapyrexia. Thus, we assessed CBS and nitric oxide synthase (NOS) activities [by means of H2S and nitrite/nitrate (NO(x)) production, respectively] as well as cyclic adenosine 3',5'-monophosphate (cAMP) and cyclic guanosine 3',5'-monophosphate (cGMP) levels in the anteroventral third ventricle region (AV3V; where the AVPO is located) during normoxia and hypoxia. Furthermore, we evaluated the effects of pharmacological modifiers of the H2S pathway given i.c.v. or intra-AVPO. I.c.v. or intra-AVPO microinjection of CBS inhibitor caused no change in Tb under normoxia but significantly attenuated hypoxia-induced anapyrexia. During hypoxia there were concurrent increases in H2S production, which could be prevented by CBS inhibitor, indicating the endogenous source of the gas. cAMP concentration, but not cGMP and NOR, correlated with CBS activity. CBS inhibition increased NOS activity, whereas H2S donor decreased NO. production. In conclusion, hypoxia activates H2S endogenous production through the CBS-H(2)S pathway in the AVPO, having a cryogenic effect. Moreover, the present data are consistent with the notion that the two gaseous molecules, H(2)S and NO, play a key role in mediating the drop in Tb caused by hypoxia and that a fine-balanced interplay between NOS-NO and CBS-H(2)S pathways takes place in the AVPO of rats exposed to hypoxia. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal models of gentamicin nephrotoxicity present acute tubular necrosis associated with inflammation, which can contribute to intensify the renal damage. Hydrogen sulfide (H2S) is a signaling molecule involved in inflammation. We evaluated the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H2S formation, on the renal damage induced by gentamicin. Male Wistar rats (N = 8) were injected with 40 mg/kg gentamicin (im) twice a day for 9 days, some of them also received PAG (N = 8, 10 mg·kg-1·day-1, ip). Control rats (N = 6) were treated with saline or PAG only (N = 4). Twenty-four-hour urine samples were collected one day after the end of these treatments, blood samples were collected, the animals were sacrificed, and the kidneys were removed for quantification of H2S formation and histological and immunohistochemical studies. Gentamicin-treated rats presented higher sodium and potassium fractional excretion, increased plasma creatinine [4.06 (3.00; 5.87) mg%] and urea levels, a greater number of macrophages/monocytes, and a higher score for tubular interstitial lesions [3.50 (3.00; 4.00)] in the renal cortex. These changes were associated with increased H2S formation in the kidneys from gentamicin-treated rats (230.60 ± 38.62 µg·mg protein-1·h-1) compared to control (21.12 ± 1.63) and PAG (11.44 ± 3.08). Treatment with PAG reduced this increase (171.60 ± 18.34), the disturbances in plasma creatinine levels [2.20 (1.92; 4.60) mg%], macrophage infiltration, and score for tubular interstitial lesions [2.00 (2.00; 3.00)]. However, PAG did not interfere with the increase in fractional sodium excretion provoked by gentamicin. The protective effect of PAG on gentamicin nephrotoxicity was related, at least in part, to decreased H2S formation.