63 resultados para Hydrochoerus hydrochaeris
Resumo:
A total of 145 capybara (Hydrochoerus hydrochaeris) fecal samples from the state of Sdo Paulo, Brazil, were screened for Cryptosporidium spp. oocysts using the malachite green method. Eight samples (5.52%) showed positive results and were further submitted to nested PCR reaction for amplification of fragments of 18S rRNA gene and 60-kDa glycoprotein gene for determination of species, alleles and subtypes of Cryptosporidium. Sequencing of the PCR products of the 18S rRNA gene fragments and 60-kDa glycoprotein gene fragments showed that for both genes all Cryptosporidium isolates from capybara were respectively 100% genetically similar to a bovine isolate of C. parvum and to C parvum subtype IIaA15G2R1. To the best of our knowledge this is the first report of Cryptosporidium infection in this rodent. The finding of zoonotic C parvum infection in a semi-aquatic mammal that inhabits anthroponotic habitats raises the concern that human water supplies may be contaminated with zoonotic Cryptosporidium oocysts from wildlife. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The high potential for the exploitation of capybara requires information about its digestory morphophysiology, to improve nutritional handling. In the present study, gross anatomy, light microscopy and body and intestine lengths of 25 capybaras were evaluated. The minimum and maximum small intestine lengths for females and males were, respectively, 441 cm and 1734 cm, and 355 cm and 1123 cm. These values position the capybara between canine and swine intestinal lengths. The ratio between small intestine and body length was 12:1, without differences between sexes. There were no statistically significant differences between sexes for each part of small intestine. Correlation between length of each small intestine segment and body length was positive, and statistically significant only for the duodenum. The small intestine wall was formed by mucosa, submucosa, muscular and serosa. The mucosa presented intestinal and duodenal glands, of mucosal and serosal types, respectively. The mucosa muscular layer consisted of two distinct layers in the jejunum and ileum, and a thin and single layer in the duodenum. The submucosa, formed by moderate dense connective tissue, didn't show glands. The fiber bundles of the internal layer of muscular tunic were helicoidally arranged. The gross anatomy of the capybara small intestine was similar to canine and swine intestines. Microscopically, however, subtle differences can be identified in the submucosa and internal muscular tunics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The genus Habronema has four valid species, of which only two are properly known. The present study aimed to describe in detail the morphology of Habronema clarki through optical and scanning electron microscopy analyses. Our results showed that the labial morphology of this parasite is closer to H. muscae than to H. microstoma. Even so, the characteristic pseudolabia and the slightly convex border of the dorsal and ventral lips are sufficient to distinguish these nematodes. Additional morphological data are presented, thus contributing to the knowledge on this little known nematode. In addition, this study provides new locality records for this species.
Resumo:
Brazilian spotted fever (BSF), caused by the bacterium Rickettsia rickettsii, is the deadliest spotted fever of the world. In most of the BSF-endemic areas, capybaras (Hydrochoerus hydrochaeris) are the principal host for the tick Amblyomma cajennense, which is the main vector of BSF. In 2012, a BSF case was confirmed in a child that was bitten by ticks in a residential park area inhabited by A. cajennense-infested capybaras in Itú municipality, southeastern Brazil. Host questing A. cajennense adult ticks were collected in the residential park and brought alive to the laboratory, where they were macerated and intraperitoneally inoculated into guinea pigs. A tick-inoculated guinea pig that presented high fever was euthanized and its internal organs were macerated and inoculated into additional guinea pigs (guinea pig passage). Tissue samples from guinea pig passages were also used to inoculate Vero cells through the shell vial technique. Infected cells were used for molecular characterization of the rickettsial isolate through PCR and DNA sequencing of fragments of three rickettsial genes (gltA, ompA, and ompB). Blood serum samples were collected from 172 capybaras that inhabited the residential park. Sera were tested through the immunofluorescence assay using R. rickettsii antigen. A tick-inoculated guinea pig presented high fever accompanied by scrotal reactions (edema and marked redness). These signs were reproduced by consecutive guinea pig passages. Rickettsia was successfully isolated in Vero cells that were inoculated with brain homogenate derived from a 3rd passage-febrile guinea pig. Molecular characterization of this rickettsial isolate (designated as strain ITU) yielded DNA sequences that were all 100% identical to corresponding sequences of R. rickettsii in Genbank. A total of 83 (48.3%) out of 172 capybaras were seroreactive to R. rickettsii, with endpoint titers ranging from 64 to 8192. A viable isolate of R. rickettsii was obtained from the tick A. cajennense, comprising the first viable R. rickettsi isolate from this tick species during the last 60 years. Nearly half of the capybara population of the residential park was seroreactive to R. rickettsii, corroborating the findings that the local A. cajennense population was infected by R. rickettsii.
Resumo:
This study aimed to evaluate the population ecology of Hydrochoerus hydrochaeris (Linnaeus, 1766) in two urban areas in the north of Paraná, an open and other protected by assessing the effects of these two different types of environments on the structure and dynamics of the population and its implications for conservation of the species. The monitoring of the populations were performed monthly between June 2014 and March 2015 in Jaboti Lake Park (Apucarana / PR) and Conservation Unit Parque Arthur Thomas (Londrina / PR). To conduct the survey population data was used the methodology of total census (direct counting of individuals).They were evaluated ecological parameters of the populations of capybaras, such as ecological density, abundance, age distribution and birth rate, as well as performed the analysis of the landscape. It was applied to analysis of variance (ANOVA) to test the differences between the averages of the abundance of each age group per year of observation, as well as the differences between the average ecological density over the years of observation. The standard relationship between the use of classes and land use in the landscape and the ecological parameters of the capybara populations was evaluated by Principal Component Analysis (PCA). The trend of variation of average abundance over time to Thomas Arthur Park revealed abrupt decrease of the population in a short period of time (2014 16 ± 9, 14 ± 1 and 2015 7±1) as well as ecological density in 2015 (0.05 ind./ha). On the other hand, the Jaboti Lake Park, showed an increase in absolute abundance, with marked recovery of the population in the same period (2014 38±8,30 and 2015 45±1,73) and coming up with an ecological density in 2015 (2 ind ./ha). The birth rate found Lake Park Jaboti was superior to Arthur Thomas Park, which had a negative rate between 2012 and 2015. The use and land cover analysis showed significant differences from the point of view of the relative contribution of landscape elements in the spatial heterogeneity. Arthur Thomas Park shows areas of dense vegetation and urban areas relatively higher than those observed in Jaboti Lake Park that revealed relatively higher proportions of the areas of agriculture / field and exposed soil. Thus, the present study revealed that the local population structure is directly related to the spatial characteristics of both studied landscapes, as can be seen by the greater abundance and density seen in Jaboti Lake Park compared to Arthur Thomas Park in recent years of study.
Resumo:
In recent years, there has been an exponential increase in the so-called “new pets”, including the domestic guinea pig (Cavia porcellus) and the capybara (Hydrochoerus hydrochaeris), two closely related Caviid rodents native to South America. Both historically bred for food purposes, they have more recently become increasingly popular as pets in the European and American continents, respectively. This led to an increasing veterinary interest in deepening the knowledge regarding their normal anatomy, as a basic contribution to other fields of veterinary medicine, including diagnostic imaging, surgery, and pathological anatomy. Being part of a bilateral framework co-tutelage agreement leading to a joint Doctoral Degree between the Alma Mater Studiorum of Bologna, Italy and the Universidad Nacional del Litoral of Santa Fe, Argentina, this research project was partly carried out in Italy (study of guinea pigs) and partly in Argentina (study of capybaras). It consisted in the macroscopic study, through anatomical dissections of carcasses of both species as well as the use of anatomical casts, and in the histological study of the various systems in the two species, and was aimed at creating a gross and microscopic comparative anatomical atlas. From the gross and microscopic morphological and morphometrical anatomical study of the different system of the guinea pig and capybara, several analogies and differences emerged. The creation of a comparative anatomical atlas of gross and microscopic anatomy of the capybara and the guinea pig might prove useful for clinical, zootechnical and research purposes.
Resumo:
In the present study, we provide new tick records from Vilhena Municipality, in the Southeast of the State of Rondônia, Northern Brazil. Ticks collected from a capybara, Hydrochoerus hydrochaeris (Linnaeus), were identified as Amblyomma romitii Tonelli-Rondelli (1 female), and Amblyomma sp. (1 larva). Ticks collected from a harpy eagle, Harpia harpyja (Linnaeus), were identified as Amblyomma cajennense (Fabricius) (16 nymphs) and Haemaphysalis juxtakochi Cooley (1 nymph). Ticks collected from a yellow-footed tortoise, Chelonoidis denticulada (Linnaeus), were identified as Amblyomma rotundatum Koch (10 females, 2 nymphs), and Amblyomma sp. (2 larvae). The present record of A. romitii is the first in the State of Rondônia, and represents the southernmost record for this tick species, indicating that its distribution area is much larger than currently recognized. Although both A. cajennense and H. juxtakochi have been reported parasitizing various bird species, we provide the first tick records on a harpy eagle. A. rotundatum is widespread in the State of Rondônia, and has been previously reported on the yellow-footed tortoise. The present records increase the tick fauna of Rondônia to 26 species.
Resumo:
This work evaluated the infection of opossums (Didelphis aurita) by Rickettsia felis, Rickettsia bellii, and Rickettsia parkeri and their role as amplifier hosts for horizontal transmission to Amblyomma cajennense and/or Amblyomma dubitatum ticks. Infection in D. aurita was induced by intraperitoneal inoculation with R. felis (n = 4 opossums), R. bellii (n = 4), and R. parkeri (n = 2). Another group of six opossums were inoculated intraperitoneally with Leibovitz-15 sterile culture medium, representing the uninfected groups (n = 2 opossums simultaneously to each infected group). Opossum blood samples collected during the study were used for DNA extraction, followed by real-time polymerase chain reaction targeting the rickettsial gene gltA, hematology, and detection of Rickettsia spp.-reactive antibodies by indirect immunofluorescence assay. Opossums were infested with uninfected A. cajennense and/or A. dubitatum for 30 days postinoculation (DPI). Flat ticks molted from ticks fed on opossums were allowed to feed on uninfected rabbits, which were tested for seroconversion by immunofluorescence assay. Samples of flat ticks were also tested by real-time polymerase chain reaction. Inoculated opossums showed no clinical abnormalities. Antibodies to Rickettsia spp. were first detected at the second to fourth DPI, with detectable titers until the 150th DPI. Rickettsemia was detected only in one opossum inoculated with R. parkeri, at the eighth DPI. Only one A. cajennense tick (2.0%) previously fed on a R. parkeri-inoculated opossum became infected. None of the rabbits infested with opossum-derived ticks seroconverted. The study demonstrated that R. felis, R. bellii, and R. parkeri were capable to produce antibody response in opossums, however, with undetectable rickettsemia for R. felis and R. bellii, and very low rickettsemia for R. parkeri. Further studies must be done with different strains of these rickettsiae, most importantly the strains that have never gone through in vitro passages.
Resumo:
Southeastern Brazil has seen dramatic landscape modifications in recent decades, due to expansion of agriculture and urban areas; these changes have influenced the distribution and abundance of vertebrates. We developed predictive models of ecological and spatial distributions of capybaras (Hydrochoerus hydrochaeris) using ecological niche modeling. Most Occurrences of capybaras were in flat areas with water bodies Surrounded by sugarcane and pasture. More than 75% of the Piracicaba River basin was estimated as potentially habitable by capybara. The models had low omission error (2.3-3.4%), but higher commission error (91.0-98.5%); these ""model failures"" seem to be more related to local habitat characteristics than to spatial ones. The potential distribution of capybaras in the basin is associated with anthropogenic habitats, particularly with intensive land use for agriculture.
Resumo:
The vomeronasal system is crucial for social and sexual communication in mammals. Two populations of vomeronasal sensory neurons, each expressing G alpha i2 or G alpha o proteins, send projections to glomeruli of the rostral or caudal accessory olfactory bulb, rAOB and cAOB, respectively. In rodents, the G alpha i2- and G alpha o-expressing vomeronasal pathways have shown differential responses to small/volatile vs. large/non-volatile semiochemicals, respectively. Moreover, early gene expression suggests predominant activation of rAOB and cAOB neurons in sexual vs. aggressive contexts, respectively. We recently described the AOB of Octodon degus, a semiarid-inhabiting diurnal caviomorph. Their AOB has a cell indentation between subdomains and the rAOB is twice the size of the cAOB. Moreover, their AOB receives innervation from the lateral aspect, contrasting with the medial innervation of all other mammals examined to date. Aiming to relate AOB anatomy with lifestyle, we performed a morphometric study on the AOB of the capybara, a semiaquatic caviomorph whose lifestyle differs remarkably from that of O. degus. Capybaras mate in water and scent-mark their surroundings with oily deposits, mostly for male-male communication. We found that, similar to O. degus, the AOB of capybaras shows a lateral innervation of the vomeronasal nerve, a cell indentation between subdomains and heterogeneous subdomains, but in contrast to O. degus the caudal portion is larger than the rostral one. We also observed that four other caviomorph species present a lateral AOB innervation and a cell indentation between AOB subdomains, suggesting that those traits could represent apomorphies of the group. We propose that although some AOB traits may be phylogenetically conserved in caviomorphs, ecological specializations may play an important role in shaping the AOB.
Resumo:
A new macropodiniid ciliate genus, Megavestibulum, is described which is endocommensal in the stomach of macropodid marsupials. Two new species, M. morganorum and M. kuhri, are described from Macropus dorsalis and Wallabia, bicolor respectively. Megavestibulum is holotrichous, the somatic ciliation arranged into meridional, curving kineties between broad ridges. The interkinetal ridges are lined apically by thick-walled vacuoles similar to those lining the longitudinal grooves of Macropodinium. The conical vestibulum is apical and very large, occupying up to 1/3 of the cell volume. The vestibular lip appears closable and has a cleft which may allow distention of the vestibullum to ingest large food items. The vestibular ultrastructure is similar to that of Macropodinium including the presence of vestibular vacuoles and the hemispherical differentiation of the distribution of small nematodesmata. Many specimens contained ingested whole ciliates of the genera Amylovorax and Polycosta. The structure of the vestibulum suggests that Megavestibulum is adapted for life as an active predator of other stomach ciliates as well as sweeping in small particulates. The morphology of Megavestibulum suggests that it represents the plesiomorphic body plan within the family Macropodiniidae.
Resumo:
A new genus of amylovoracid ciliates, Bandia gen.nov., is described. They are endosymbiotic/endocommensal in the stomachs of macropodid marsupials. Six new species, B. beveridgei, B. equimontanensis, B. tammar, B. deveneyi, B. cribbi and B. smalesae, are described from Setonix brachyurus, Petrogale assimilis, Macropus eugenii, M. robustus, M. parryi and M. agilis respectively. The gross morphology of Bandia is similar to that of Bitricha, with holotrichous somatic ciliation in two fields, longitudinal dorsal and oblique ventral. The somatic kineties are arranged in groups between non-ciliated. major interkinetal ridges; the groups of kineties thus give the cell a banded appearance. Several species are bimorphic, one form holotrichous and the other with a glabrous right body groove which appears to be derived from an ingrowth of one of the major interkinetal ridges. The groove may function in attachment either in sequestration or conjugation. The ultrastructure of the somatic kineties and the oral structures is similar to that of Amylovorax. Bandia also has unique ultrastructural features associated with the major interkinetal ridges, right body groove and a karyophore. Morphological evolution within the Amylovoracidae may have proceeded from simple forms such as Amylovorax via a process of cellular torsion and/or oral migration to forms similar to Bitricha and by further torsion and cellular elaboration to Bandia.
Resumo:
A new family, Polycostidae, containing one new genus, Polycosta, of ciliates endwocommensal in the stomachs of macropodid marsupials is described. Four new species, A roundi, P. turniae, A sebastopolensis and P. parma are described from Wallabia bicolor, Macropus dorsalis, Petrogale herberti and M. eugenii, respectively. Polycosta is holotrichous with slightly spiral meridional kineties arranged between broad interkinetal ridges. The ultrastructure of one representative species displays the knitted together pattern of postciliary microtubules and kinetodesmata of somatic kinetids common in trichostomes and the interkinetal ridges are dominated by layers of dark bodies but lack ectoplasmic hydrogenosomes. The vestibulum is conical and its aperture appears capable of closing tightly in most species; vesibular kineties are continuations of the right somatic kineties into the vestibulum. There is a prominent phago-plasm delimited internally by a basket of nematodesmata derived from electron dense plates at the bases of kinetosomes the anterior somatic and vestibular kineties. There is a prominent cytoproct which is situated within an invagination of the cell in some species. Polycosta is similar to Amylovorax in terms of gross morphology, somatic ciliature and cortical ultrastructure. The vestibular ultrastructure, however, is more similar to that of Macropodinium. The affinities of the group are thus not clear and this unique combination of characters supports the erection of a new family.
Resumo:
Trichostome ciliates are associated with many different lineages of herbivorous mammals but there are few comparative studies of these associations in each lineage of herbivores. Here the occurrence of the ciliate fauna in a range of herbivorous marsupials (diprotodonts) is investigated and compared with that of ruminants. A total of 371 potential host animals, representing 33 species and 7 families, were examined for the presence of ciliates. The prevalence of endocommensal ciliates within individual host species varied between 0 and 100%. Of the different dietary groups of marsupials examined, only foregut (macropodids) and hindgut (vombatids) fermentative herbivores were found to harbour ciliates; carnivorous (dasyurids), omnivorous (peramelids) and midgut fermenting herbivores (phalangeroids) all lacked ciliates. The majority of ciliate species were oioxenic, several occurred in closely related hosts and some were able to colonise unnatural hosts in captive populations. Ciliate prevalences were found to vary at all levels: between hosts of different species, between conspecific hosts collected at different localities or seasons and between conspecific hosts at one collecting locality. The faunal composition of the 2 marsupial families which harboured ciliates differed greatly: the vombatid fauna was composed exclusively of amylovoracids whereas the macropodids harboured amylovoracids, polycostids and macropodiniids. In comparison to the ciliate fauna of ruminants, the fauna of macropodids is both depauperate and much more host specific. Low species richness in each host may be due to the large numbers of stomach nematodes in macropodids which compete with and may prey upon the ciliates within the stomach. The high levels of host specificity are probably due to different patterns of ciliate transmission in macropodids as they do not ruminate, eructate or feed indiscriminantly on pasture contaminated with saliva containing ciliates.