819 resultados para Hybrid clustering algorithm
Resumo:
Relative geometric arrangements of the sample points, with reference to the structure of the imbedding space, produce clusters. Hence, if each sample point is imagined to acquire a volume of a small M-cube (called pattern-cell), depending on the ranges of its (M) features and number (N) of samples; then overlapping pattern-cells would indicate naturally closer sample-points. A chain or blob of such overlapping cells would mean a cluster and separate clusters would not share a common pattern-cell between them. The conditions and an analytic method to find such an overlap are developed. A simple, intuitive, nonparametric clustering procedure, based on such overlapping pattern-cells is presented. It may be classified as an agglomerative, hierarchical, linkage-type clustering procedure. The algorithm is fast, requires low storage and can identify irregular clusters. Two extensions of the algorithm, to separate overlapping clusters and to estimate the nature of pattern distributions in the sample space, are also indicated.
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
The contour tree is a topological abstraction of a scalar field that captures evolution in level set connectivity. It is an effective representation for visual exploration and analysis of scientific data. We describe a work-efficient, output sensitive, and scalable parallel algorithm for computing the contour tree of a scalar field defined on a domain that is represented using either an unstructured mesh or a structured grid. A hybrid implementation of the algorithm using the GPU and multi-core CPU can compute the contour tree of an input containing 16 million vertices in less than ten seconds with a speedup factor of upto 13. Experiments based on an implementation in a multi-core CPU environment show near-linear speedup for large data sets.
nbs: a new representation for point surfaces based on genetic clustering algorithm: cad and graphics
Resumo:
Tianjin University of Technology
Resumo:
We give a hybrid algorithm for parsing epsilon grammars based on Tomita's non-ϵ-grammar parsing algorithm ([Tom86]) and Nozohoor-Farshi's ϵ-grammar recognition algorithm ([NF91]). The hybrid parser handles the same set of grammars handled by Nozohoor-Farshi's recognizer. The algorithm's details and an example of its use are given. We also discuss the deployment of the hybrid algorithm within a GB parser, and the reason an ϵ grammar parser is needed in our GB parser.
Resumo:
This paper proposes a novel hybrid forward algorithm (HFA) for the construction of radial basis function (RBF) neural networks with tunable nodes. The main objective is to efficiently and effectively produce a parsimonious RBF neural network that generalizes well. In this study, it is achieved through simultaneous network structure determination and parameter optimization on the continuous parameter space. This is a mixed integer hard problem and the proposed HFA tackles this problem using an integrated analytic framework, leading to significantly improved network performance and reduced memory usage for the network construction. The computational complexity analysis confirms the efficiency of the proposed algorithm, and the simulation results demonstrate its effectiveness
Resumo:
Radial basis functions can be combined into a network structure that has several advantages over conventional neural network solutions. However, to operate effectively the number and positions of the basis function centres must be carefully selected. Although no rigorous algorithm exists for this purpose, several heuristic methods have been suggested. In this paper a new method is proposed in which radial basis function centres are selected by the mean-tracking clustering algorithm. The mean-tracking algorithm is compared with k means clustering and it is shown that it achieves significantly better results in terms of radial basis function performance. As well as being computationally simpler, the mean-tracking algorithm in general selects better centre positions, thus providing the radial basis functions with better modelling accuracy
Resumo:
An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.
Resumo:
With the fast development of wireless communications, ZigBee and semiconductor devices, home automation networks have recently become very popular. Since typical consumer products deployed in home automation networks are often powered by tiny and limited batteries, one of the most challenging research issues is concerning energy reduction and the balancing of energy consumption across the network in order to prolong the home network lifetime for consumer devices. The introduction of clustering and sink mobility techniques into home automation networks have been shown to be an efficient way to improve the network performance and have received significant research attention. Taking inspiration from nature, this paper proposes an Ant Colony Optimization (ACO) based clustering algorithm specifically with mobile sink support for home automation networks. In this work, the network is divided into several clusters and cluster heads are selected within each cluster. Then, a mobile sink communicates with each cluster head to collect data directly through short range communications. The ACO algorithm has been utilized in this work in order to find the optimal mobility trajectory for the mobile sink. Extensive simulation results from this research show that the proposed algorithm significantly improves home network performance when using mobile sinks in terms of energy consumption and network lifetime as compared to other routing algorithms currently deployed for home automation networks.
Resumo:
A large amount of biological data has been produced in the last years. Important knowledge can be extracted from these data by the use of data analysis techniques. Clustering plays an important role in data analysis, by organizing similar objects from a dataset into meaningful groups. Several clustering algorithms have been proposed in the literature. However, each algorithm has its bias, being more adequate for particular datasets. This paper presents a mathematical formulation to support the creation of consistent clusters for biological data. Moreover. it shows a clustering algorithm to solve this formulation that uses GRASP (Greedy Randomized Adaptive Search Procedure). We compared the proposed algorithm with three known other algorithms. The proposed algorithm presented the best clustering results confirmed statistically. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Wireless Sensor Networks (WSN) are a special kind of ad-hoc networks that is usually deployed in a monitoring field in order to detect some physical phenomenon. Due to the low dependability of individual nodes, small radio coverage and large areas to be monitored, the organization of nodes in small clusters is generally used. Moreover, a large number of WSN nodes is usually deployed in the monitoring area to increase WSN dependability. Therefore, the best cluster head positioning is a desirable characteristic in a WSN. In this paper, we propose a hybrid clustering algorithm based on community detection in complex networks and traditional K-means clustering technique: the QK-Means algorithm. Simulation results show that QK-Means detect communities and sub-communities thus lost message rate is decreased and WSN coverage is increased. © 2012 IEEE.