972 resultados para Humeral supracondylar fractures


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background:
The factors influencing the decision making of operative treatment for fractures of the proximal humerus are debated. We hypothesized that there is no difference in treatment recommendations between surgeons shown radiographs alone and those shown radiographs and patient information. Secondarily, we addressed (1) factors associated with a recommendation for operative treatment, (2) factors associated with recommendation for arthroplasty, (3) concordance with the recommendations of the treating surgeons, and (4) factors affecting the inter-rater reliability of treatment recommendations.
Methods: A total of 238 surgeons of the Science of Variation Group rated 40 radiographs of patients with proximal humerus fractures. Participants were randomized to receive information about the patient and mechanism of injury. The response variables included the choice of treatment (operative vs nonoperative) and the percentage of matches with the actual treatment.
Results: Participants who received patient information recommended operative treatment less than those who received no information. The patient information that had the greatest influence on treatment recommendations included age (55%) and fracture me chanism (32%). The only other factor associated with a recommendation for operative treatment was region of practice. There was no significant difference between participants who were and were not provided with information regarding agreement with the actual treatment (operative vs nonoperative) provided by the treating surgeon.
Conclusion: Patient information - older age in particular - is associated with a higher likelihood of recommending nonoperative treatment than radiographs alone. Clinical information did not improve agreement of the Science of Variation Group with the actual treatment or the generally poor interobserver agreement on treatment recommendations

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: The stability of 2 fixation techniques for the tuberosities in patients with 3- or 4-part proximal humerus fractures treated with hemiarthroplasties was compared. DESIGN: Retrospective review of a nonrandomized sequential series of patients. SETTING: Level I university orthopaedic surgery department. PATIENTS: A consecutive series of 58 patients (average age, 64 years) from 1990 to 1999 with 3- and 4-part fractures of the proximal humerus. INTERVENTION: In group 1, 31 patients were treated with either a Neer or Aequalis shoulder prosthesis using nonabsorbable sutures and no bone graft for the reattachment of the tuberosities. In group 2, 27 patients were treated with either an Aequalis or Epoca shoulder prosthesis and a combination of cable fixation and bone grafting. MAIN OUTCOME MEASUREMENTS: At follow-up (average, 32 months), radiographs were taken to confirm tuberosity fixation or degree of displacement or resorption. Functional outcome was assessed by the Constant-Murley Score. RESULTS: Significantly more dislocated tuberosities were found radiographically in group 1 (10 of 13 in total, P = 0.011), and significantly more tuberosities were resorbed in group 1 (9 of 12 in total, P = 0.012). Significant differences in functional results among healed versus failed tuberosity fixation were observed for activity of daily living (P = 0.05), range of motion (P = 0.002), strength (P = 0.01), the total score (P = 0.008), and the passive rotation amplitude (P = 0.04). CONCLUSION: In hemiarthroplasties for proximal humeral fractures, the reattachment of the tuberosities with cable wire and bone grafting gives consistently better radiographic and functional results than with suture fixation alone.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND:The classification of proximal humeral fractures remains challenging. The two main classification systems used, the Neer and the AO classification, have both been shown to have less than ideal interobserver agreement. Agreement in classification is required, however, to guide fracture management.

METHOD:Data from the Victorian Orthopaedic Trauma Outcomes Registry were collected and the X-rays of 104 proximal humeral fractures were reviewed by three orthopaedic consultants. They classified the fractures according to the Neer and AO classifications, as well as their simplified versions. Interobserver agreement was then assessed using kappa statistics.

RESULTS:Interobserver agreement was better overall in the Neer classification, which was moderate (kappa = 0.40-0.58), than the AO classification, which was fair to moderate (kappa = 0.31-0.54). When simplified, the Neer and AO classification interobserver agreement remained similar.

CONCLUSION:The classification of proximal humeral fractures with both the Neer and the AO systems remains difficult with minimal improvements seen when reducing the number of categories in each classification system. From these results, the Neer classification system would appear slightly more useful in clinical practice to guide treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The functional results associated with nonoperative treatment of severely impacted valgus fractures of the proximal part of the humerus are poor, and these injuries are difficult to treat with minimally invasive percutaneous fixation techniques. The aim of this study was to review the functional and radiographic results and complications of a new operative technique in a series of twenty-five patients.

Methods: Over a two-year period, we treated twenty-nine patients with a severely impacted valgus fracture of the proximal part of the humerus. Three patients were lost to follow-up and one died, leaving twenty-five patients who were available for the study. In all of the fractures, the head-shaft angle had been tilted into =160° of valgus and the greater tuberosity was displaced by >1 cm. All patients were treated with open reduction of the fracture, and the space created behind the humeral head was filled with Norian Skeletal Repair System (SRS) bone substitute. The fractures were stabilized with either screws or buttress plate fixation. Associated rotator cuff tears were repaired. All patients underwent functional outcome assessment with use of the Constant, DASH (Disabilities of the Arm, Shoulder and Hand), and SF-36 (Short Form-36) scores at one year, and twelve patients were followed for two years.

Results: All fractures united within the first year, all reductions were maintained, and no patient had signs of osteonecrosis of the humeral head on the latest follow-up radiographs. At one year, the median Constant score was 80 points and the median DASH score was 22 points. The functional results continued to be satisfactory in the twelve patients who were followed for two years. The results in our series were better than those achieved in studies of nonoperative treatment of similar fracture configurations. There were six clinically relevant complications, although none required a reoperation and all six patients had a satisfactory short-term functional outcome.

Conclusions: Internal fixation of severely impacted valgus fractures of the proximal part of the humerus, supplemented by Norian SRS bone substitute to fill the proximal humeral metaphyseal defect, produces good early functional and radiographic outcomes. Additional follow-up will be required to assess whether these initially satisfactory outcomes are maintained over the longer term.

Level of Evidence: Therapeutic study, Level IV (case series [no, or historical, control group]). See Instructions to Authors for a complete description of levels of evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated sex- and age-specific associations between income and fractures at the hip, humerus, spine, and forearm in adults aged ≥50 years. Compared to men with the highest income, men with the lowest income had an increased fracture risk at all skeletal sites. These associations were attenuated in women.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated change in health-related quality of life due to fracture in Australian adults aged over 50 years. Fractures reduce quality of life with the loss sustained at least over 12 months. At a population level, the loss was equivalent to 65 days in full health per fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Backyard trampolines are immensely popular among children, but are associated with an increase of trampoline-related injuries. The aim of this study was to evaluate radiographs of children with trampoline related injuries and to determine the risk factors. Methods Between 2003 and 2009, 286 children under the age of 16 with backyard trampoline injuries were included in the study. The number of injuries increased from 13 patients in 2003 to 86 in 2009. The median age of the 286 patients was 7 years (range: 1–15 years). Totally 140 (49%) patients were males, and 146 (51%) females. Medical records and all available diagnostic imaging were reviewed. A questionnaire was sent to the parents to evaluate the circumstances of each injury, the type of trampoline, the protection equipment and the experience of the children using the trampoline. The study was approved by the Institutional Ethics Committee of the University Hospital of Bern. Results The questionnaires and radiographs of the 104 patients were available for evaluation. A fracture was sustained in 51 of the 104 patients. More than 75% of all patients sustaining injuries and in 90% of patients with fractures were jumping on the trampoline with other children at the time of the accident. The most common fractures were supracondylar humeral fractures (29%) and forearm fractures (25%). Fractures of the proximal tibia occurred especially in younger children between 2–5 years of age. Conclusions Children younger than 5 years old are at risk for specific proximal tibia fractures (“Trampoline Fracture”). A child jumping simultaneously with other children has a higher risk of suffering from a fracture.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

HYPOTHESIS: This study addresses the outcome after osteosynthesis or hemiarthroplasty, using a cohort of patients that was enrolled in a previous prospective study on humeral head perfusion and was consequently treated using a common conceptual approach. MATERIALS AND METHODS: Between 1998 and 2001, 98 patients with 100 fractures of the proximal humerus were treated surgically by a single surgeon with open reduction and internal fixation (ORIF) (51/100, group A, median age 54 years; range, 21-88) or with hemiarthroplasty (49/100, group B, median age 66 years; range, 38-87). Seventy-six of 98 patients were available for re-evaluation at a mean follow-up of five years (3.3-7.3) using the Constant-Murley score (CMS), the Subjective Shoulder Value (SSV), and conventional radiographs. RESULTS: The median total CMS was 77 (range, 37-98) for group A and 70 (range, 39-84) for group B. The median SSV was 92 (range, 40-100) for group A and 90 (range, 40-100) for group B. Avascular necrosis occured in 6/40 fractures treated with ORIF. CONCLUSION: Osteosynthesis and hemiarthroplasty yield similar functional results and comparable patient satisfaction following the applied decision making process in this selected patient cohort. Osteosynthesis with preservation of the humeral head is worth considering when adequate reduction and stable conditions for revascularization can be obtained. In patients with osteopenic bone and/or comminuted fractures, hemiarthroplasty is a viable alternative. LEVEL OF EVIDENCE: Level 2; Prospective non-randomized comparison study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antegrade nailing of proximal humeral fractures using a straight nail can damage the bony insertion of the supraspinatus tendon and may lead to varus failure of the construct. In order to establish the ideal anatomical landmarks for insertion of the nail and their clinical relevance we analysed CT scans of bilateral proximal humeri in 200 patients (mean age 45.1 years (sd 19.6; 18 to 97) without humeral fractures. The entry point of the nail was defined by the point of intersection of the anteroposterior and lateral vertical axes with the cortex of the humeral head. The critical point was defined as the intersection of the sagittal axis with the medial limit of the insertion of the supraspinatus tendon on the greater tuberosity. The region of interest, i.e. the biggest entry hole that would not encroach on the insertion of the supraspinatus tendon, was calculated setting a 3 mm minimal distance from the critical point. This identified that 38.5% of the humeral heads were categorised as 'critical types', due to morphology in which the predicted offset of the entry point would encroach on the insertion of the supraspinatus tendon that may damage the tendon and reduce the stability of fixation. We therefore emphasise the need for 'fastidious' pre-operative planning to minimise this risk.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS To investigate and quantify the clinical benefits of early versus delayed application of Thomas splints in patients with isolated femur shaft fractures. MATERIALS AND METHODS Level IV retrospective clinical and radiological analysis of patients presenting from January to December 2012 at a Level 1 Trauma Unit. All skeletally mature patients with isolated femur shaft fractures independently of their mechanism of injury were included. Exclusion criteria were: ipsilateral fracture of the lower limb, neck and supracondylar femur fractures, periprosthetic and incomplete fractures. Their clinical records were analysed for blood transfusion requirements, pulmonary complications, surgery time, duration of hospital stay and analgesic requirements. RESULTS A total of 106 patients met our inclusion criteria. There were 74 males and 32 females. Fifty seven (54%) patients were in the 'early splinted' group and 49 patients (46%) were in the 'delayed splinted' group (P>0.05). The need for blood transfusion was significantly reduced in the 'early splinted' group (P=0.04). There was a significantly higher rate of pulmonary complications in the 'delayed splinted' group (P=0.008). All other parameters were similar between the two groups. CONCLUSION The early application of Thomas splints for isolated femur fractures in non-polytraumatised patients has a clinically and statistically significant benefit of reducing the need for blood transfusions and the incidence of pulmonary complications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently the National Patient Safety Agency in the United Kingdom published a report entitled "Mitigating surgical risk in patients undergoing hip arthroplasty for fractures of the proximal femur". A total of 26 deaths had been reported to them when cement was used at hemiarthroplasty between October 2003 and October 2008. This paper considers the evidence for using cement fixation of a hemiarthroplasty in the treatment of hip fractures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoporosis is a disease characterized by low bone mass and micro-architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Osteoporosis affects over 200 million people worldwide, with an estimated 1.5 million fractures annually in the United States alone, and with attendant costs exceeding $10 billion dollars per annum. Osteoporosis reduces bone density through a series of structural changes to the honeycomb-like trabecular bone structure (micro-structure). The reduced bone density, coupled with the microstructural changes, results in significant loss of bone strength and increased fracture risk. Vertebral compression fractures are the most common type of osteoporotic fracture and are associated with pain, increased thoracic curvature, reduced mobility, and difficulty with self care. Surgical interventions, such as kyphoplasty or vertebroplasty, are used to treat osteoporotic vertebral fractures by restoring vertebral stability and alleviating pain. These minimally invasive procedures involve injecting bone cement into the fractured vertebrae. The techniques are still relatively new and while initial results are promising, with the procedures relieving pain in 70-95% of cases, medium-term investigations are now indicating an increased risk of adjacent level fracture following the procedure. With the aging population, understanding and treatment of osteoporosis is an increasingly important public health issue in developed Western countries. The aim of this study was to investigate the biomechanics of spinal osteoporosis and osteoporotic vertebral compression fractures by developing multi-scale computational, Finite Element (FE) models of both healthy and osteoporotic vertebral bodies. The multi-scale approach included the overall vertebral body anatomy, as well as a detailed representation of the internal trabecular microstructure. This novel, multi-scale approach overcame limitations of previous investigations by allowing simultaneous investigation of the mechanics of the trabecular micro-structure as well as overall vertebral body mechanics. The models were used to simulate the progression of osteoporosis, the effect of different loading conditions on vertebral strength and stiffness, and the effects of vertebroplasty on vertebral and trabecular mechanics. The model development process began with the development of an individual trabecular strut model using 3D beam elements, which was used as the building block for lattice-type, structural trabecular bone models, which were in turn incorporated into the vertebral body models. At each stage of model development, model predictions were compared to analytical solutions and in-vitro data from existing literature. The incremental process provided confidence in the predictions of each model before incorporation into the overall vertebral body model. The trabecular bone model, vertebral body model and vertebroplasty models were validated against in-vitro data from a series of compression tests performed using human cadaveric vertebral bodies. Firstly, trabecular bone samples were acquired and morphological parameters for each sample were measured using high resolution micro-computed tomography (CT). Apparent mechanical properties for each sample were then determined using uni-axial compression tests. Bone tissue properties were inversely determined using voxel-based FE models based on the micro-CT data. Specimen specific trabecular bone models were developed and the predicted apparent stiffness and strength were compared to the experimentally measured apparent stiffness and strength of the corresponding specimen. Following the trabecular specimen tests, a series of 12 whole cadaveric vertebrae were then divided into treated and non-treated groups and vertebroplasty performed on the specimens of the treated group. The vertebrae in both groups underwent clinical-CT scanning and destructive uniaxial compression testing. Specimen specific FE vertebral body models were developed and the predicted mechanical response compared to the experimentally measured responses. The validation process demonstrated that the multi-scale FE models comprising a lattice network of beam elements were able to accurately capture the failure mechanics of trabecular bone; and a trabecular core represented with beam elements enclosed in a layer of shell elements to represent the cortical shell was able to adequately represent the failure mechanics of intact vertebral bodies with varying degrees of osteoporosis. Following model development and validation, the models were used to investigate the effects of progressive osteoporosis on vertebral body mechanics and trabecular bone mechanics. These simulations showed that overall failure of the osteoporotic vertebral body is initiated by failure of the trabecular core, and the failure mechanism of the trabeculae varies with the progression of osteoporosis; from tissue yield in healthy trabecular bone, to failure due to instability (buckling) in osteoporotic bone with its thinner trabecular struts. The mechanical response of the vertebral body under load is highly dependent on the ability of the endplates to deform to transmit the load to the underlying trabecular bone. The ability of the endplate to evenly transfer the load through the core diminishes with osteoporosis. Investigation into the effect of different loading conditions on the vertebral body found that, because the trabecular bone structural changes which occur in osteoporosis result in a structure that is highly aligned with the loading direction, the vertebral body is consequently less able to withstand non-uniform loading states such as occurs in forward flexion. Changes in vertebral body loading due to disc degeneration were simulated, but proved to have little effect on osteoporotic vertebra mechanics. Conversely, differences in vertebral body loading between simulated invivo (uniform endplate pressure) and in-vitro conditions (where the vertebral endplates are rigidly cemented) had a dramatic effect on the predicted vertebral mechanics. This investigation suggested that in-vitro loading using bone cement potting of both endplates has major limitations in its ability to represent vertebral body mechanics in-vivo. And lastly, FE investigation into the biomechanical effect of vertebroplasty was performed. The results of this investigation demonstrated that the effect of vertebroplasty on overall vertebra mechanics is strongly governed by the cement distribution achieved within the trabecular core. In agreement with a recent study, the models predicted that vertebroplasty cement distributions which do not form one continuous mass which contacts both endplates have little effect on vertebral body stiffness or strength. In summary, this work presents the development of a novel, multi-scale Finite Element model of the osteoporotic vertebral body, which provides a powerful new tool for investigating the mechanics of osteoporotic vertebral compression fractures at the trabecular bone micro-structural level, and at the vertebral body level.