939 resultados para Humanoid Robot
Resumo:
There is currently an increasing demand for robots able to acquire the sequential organization of tasks from social learning interactions with ordinary people. Interactive learning-by-demonstration and communication is a promising research topic in current robotics research. However, the efficient acquisition of generalized task representations that allow the robot to adapt to different users and contexts is a major challenge. In this paper, we present a dynamic neural field (DNF) model that is inspired by the hypothesis that the nervous system uses the off-line re-activation of initial memory traces to incrementally incorporate new information into structured knowledge. To achieve this, the model combines fast activation-based learning to robustly represent sequential information from single task demonstrations with slower, weight-based learning during internal simulations to establish longer-term associations between neural populations representing individual subtasks. The efficiency of the learning process is tested in an assembly paradigm in which the humanoid robot ARoS learns to construct a toy vehicle from its parts. User demonstrations with different serial orders together with the correction of initial prediction errors allow the robot to acquire generalized task knowledge about possible serial orders and the longer term dependencies between subgoals in very few social learning interactions. This success is shown in a joint action scenario in which ARoS uses the newly acquired assembly plan to construct the toy together with a human partner.
Resumo:
As AI has begun to reach out beyond its symbolic, objectivist roots into the embodied, experientialist realm, many projects are exploring different aspects of creating machines which interact with and respond to the world as humans do. Techniques for visual processing, object recognition, emotional response, gesture production and recognition, etc., are necessary components of a complete humanoid robot. However, most projects invariably concentrate on developing a few of these individual components, neglecting the issue of how all of these pieces would eventually fit together. The focus of the work in this dissertation is on creating a framework into which such specific competencies can be embedded, in a way that they can interact with each other and build layers of new functionality. To be of any practical value, such a framework must satisfy the real-world constraints of functioning in real-time with noisy sensors and actuators. The humanoid robot Cog provides an unapologetically adequate platform from which to take on such a challenge. This work makes three contributions to embodied AI. First, it offers a general-purpose architecture for developing behavior-based systems distributed over networks of PC's. Second, it provides a motor-control system that simulates several biological features which impact the development of motor behavior. Third, it develops a framework for a system which enables a robot to learn new behaviors via interacting with itself and the outside world. A few basic functional modules are built into this framework, enough to demonstrate the robot learning some very simple behaviors taught by a human trainer. A primary motivation for this project is the notion that it is practically impossible to build an "intelligent" machine unless it is designed partly to build itself. This work is a proof-of-concept of such an approach to integrating multiple perceptual and motor systems into a complete learning agent.
Resumo:
The development of robots has shown itself as a very complex interdisciplinary research field. The predominant procedure for these developments in the last decades is based on the assumption that each robot is a fully personalized project, with the direct embedding of hardware and software technologies in robot parts with no level of abstraction. Although this methodology has brought countless benefits to the robotics research, on the other hand, it has imposed major drawbacks: (i) the difficulty to reuse hardware and software parts in new robots or new versions; (ii) the difficulty to compare performance of different robots parts; and (iii) the difficulty to adapt development needs-in hardware and software levels-to local groups expertise. Large advances might be reached, for example, if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a framework for robots, TORP (The Open Robot Project), that aims to put forward a standardization in all dimensions (electrical, mechanical and computational) of a robot shared development model. This architecture is based on the dissociation between the robot and its parts, and between the robot parts and their technologies. In this paper, the first specification for a TORP family and the first humanoid robot constructed following the TORP specification set are presented, as well as the advances proposed for their improvement.
Resumo:
Humanoid robots are an extremely complex interdisciplinary research field. Particularly, the development of high size humanoid robots usually requires joint efforts and skills from groups that are in many different research centers around the world. However, there are serious constraints in this kind of collaborative development. Some efforts have been made in order to propose new software frameworks that can allow distributed development with also some degree of hardware abstraction, allowing software reuse in successive projects. However, computation represents only one of the dimensions in robotics tasks, and the need for reuse and exchange of full robot modules between groups are growing. Large advances could be reached if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a new robot framework, from now on called TORP (The Open Robot Project), that aims to provide a standard architecture in all dimensions (electrical, mechanical and computational) for this collaborative development. This methodology also represents an open project that is fully shared. In this paper, the first robot constructed following the TORP specification set is presented as well as the advances proposed for its improvement. © 2010 IEEE.
Resumo:
This paper proposes a novel design of a reconfigurable humanoid robot head, based on biological likeness of human being so that the humanoid robot could agreeably interact with people in various everyday tasks. The proposed humanoid head has a modular and adaptive structural design and is equipped with three main components: frame, neck motion system and omnidirectional stereovision system modules. The omnidirectional stereovision system module being the last module, a motivating contribution with regard to other computer vision systems implemented in former humanoids, it opens new research possibilities for achieving human-like behaviour. A proposal for a real-time catadioptric stereovision system is presented, including stereo geometry for rectifying the system configuration and depth estimation. The methodology for an initial approach for visual servoing tasks is divided into two phases, first related to the robust detection of moving objects, their depth estimation and position calculation, and second the development of attention-based control strategies. Perception capabilities provided allow the extraction of 3D information from a wide range of visions from uncontrolled dynamic environments, and work results are illustrated through a number of experiments.
Resumo:
Independientemente de la existencia de técnicas altamente sofisticadas y capacidades de cómputo cada vez más elevadas, los problemas asociados a los robots que interactúan con entornos no estructurados siguen siendo un desafío abierto en robótica. A pesar de los grandes avances de los sistemas robóticos autónomos, hay algunas situaciones en las que una persona en el bucle sigue siendo necesaria. Ejemplos de esto son, tareas en entornos de fusión nuclear, misiones espaciales, operaciones submarinas y cirugía robótica. Esta necesidad se debe a que las tecnologías actuales no pueden realizar de forma fiable y autónoma cualquier tipo de tarea. Esta tesis presenta métodos para la teleoperación de robots abarcando distintos niveles de abstracción que van desde el control supervisado, en el que un operador da instrucciones de alto nivel en la forma de acciones, hasta el control bilateral, donde los comandos toman la forma de señales de control de bajo nivel. En primer lugar, se presenta un enfoque para llevar a cabo la teleoperación supervisada de robots humanoides. El objetivo es controlar robots terrestres capaces de ejecutar tareas complejas en entornos de búsqueda y rescate utilizando enlaces de comunicación limitados. Esta propuesta incorpora comportamientos autónomos que el operador puede utilizar para realizar tareas de navegación y manipulación mientras se permite cubrir grandes áreas de entornos remotos diseñados para el acceso de personas. Los resultados experimentales demuestran la eficacia de los métodos propuestos. En segundo lugar, se investiga el uso de dispositivos rentables para telemanipulación guiada. Se presenta una aplicación que involucra un robot humanoide bimanual y un traje de captura de movimiento basado en sensores inerciales. En esta aplicación, se estudian las capacidades de adaptación introducidas por el factor humano y cómo estas pueden compensar la falta de sistemas robóticos de alta precisión. Este trabajo es el resultado de una colaboración entre investigadores del Biorobotics Laboratory de la Universidad de Harvard y el Centro de Automática y Robótica UPM-CSIC. En tercer lugar, se presenta un nuevo controlador háptico que combina velocidad y posición. Este controlador bilateral híbrido hace frente a los problemas relacionados con la teleoperación de un robot esclavo con un gran espacio de trabajo usando un dispositivo háptico pequeño como maestro. Se pueden cubrir amplias áreas de trabajo al cambiar automáticamente entre los modos de control de velocidad y posición. Este controlador háptico es ideal para sistemas maestro-esclavo con cinemáticas diferentes, donde los comandos se transmiten en el espacio de la tarea del entorno remoto. El método es validado para realizar telemanipulación hábil de objetos con un robot industrial. Por último, se introducen dos contribuciones en el campo de la manipulación robótica. Por un lado, se presenta un nuevo algoritmo de cinemática inversa, llamado método iterativo de desacoplamiento cinemático. Este método se ha desarrollado para resolver el problema cinemático inverso de un tipo de robot de seis grados de libertad donde una solución cerrada no está disponible. La eficacia del método se compara con métodos numéricos convencionales. Además, se ha diseñado una taxonomía robusta de agarres que permite controlar diferentes manos robóticas utilizando una correspondencia, basada en gestos, entre los espacios de trabajo de la mano humana y de la mano robótica. El gesto de la mano humana se identifica mediante la lectura de los movimientos relativos del índice, el pulgar y el dedo medio del usuario durante las primeras etapas del agarre. ABSTRACT Regardless of the availability of highly sophisticated techniques and ever increasing computing capabilities, the problems associated with robots interacting with unstructured environments remains an open challenge. Despite great advances in autonomous robotics, there are some situations where a humanin- the-loop is still required, such as, nuclear, space, subsea and robotic surgery operations. This is because the current technologies cannot reliably perform all kinds of task autonomously. This thesis presents methods for robot teleoperation strategies at different levels of abstraction ranging from supervisory control, where the operator gives high-level task actions, to bilateral teleoperation, where the commands take the form of low-level control inputs. These strategies contribute to improve the current human-robot interfaces specially in the case of slave robots deployed at large workspaces. First, an approach to perform supervisory teleoperation of humanoid robots is presented. The goal is to control ground robots capable of executing complex tasks in disaster relief environments under constrained communication links. This proposal incorporates autonomous behaviors that the operator can use to perform navigation and manipulation tasks which allow covering large human engineered areas of the remote environment. The experimental results demonstrate the efficiency of the proposed methods. Second, the use of cost-effective devices for guided telemanipulation is investigated. A case study involving a bimanual humanoid robot and an Inertial Measurement Unit (IMU) Motion Capture (MoCap) suit is introduced. Herein, it is corroborated how the adaptation capabilities offered by the human-in-the-loop factor can compensate for the lack of high-precision robotic systems. This work is the result of collaboration between researchers from the Harvard Biorobotics Laboratory and the Centre for Automation and Robotics UPM-CSIC. Thirdly, a new haptic rate-position controller is presented. This hybrid bilateral controller copes with the problems related to the teleoperation of a slave robot with large workspace using a small haptic device as master. Large workspaces can be covered by automatically switching between rate and position control modes. This haptic controller is ideal to couple kinematic dissimilar master-slave systems where the commands are transmitted in the task space of the remote environment. The method is validated to perform dexterous telemanipulation of objects with a robotic manipulator. Finally, two contributions for robotic manipulation are introduced. First, a new algorithm, the Iterative Kinematic Decoupling method, is presented. It is a numeric method developed to solve the Inverse Kinematics (IK) problem of a type of six-DoF robotic arms where a close-form solution is not available. The effectiveness of this IK method is compared against conventional numerical methods. Second, a robust grasp mapping has been conceived. It allows to control a wide range of different robotic hands using a gesture based correspondence between the human hand space and the robotic hand space. The human hand gesture is identified by reading the relative movements of the index, thumb and middle fingers of the user during the early stages of grasping.
Resumo:
The development of robots has shown itself as a very complex interdisciplinary research field. The predominant procedure for these developments in the last decades is based on the assumption that each robot is a fully personalized project, with the direct embedding of hardware and software technologies in robot parts with no level of abstraction. Although this methodology has brought countless benefits to the robotics research, on the other hand, it has imposed major drawbacks: (i) the difficulty to reuse hardware and software parts in new robots or new versions; (ii) the difficulty to compare performance of different robots parts; and (iii) the difficulty to adapt development needs-in hardware and software levels-to local groups expertise. Large advances might be reached, for example, if physical parts of a robot could be reused in a different robot constructed with other technologies by other researcher or group. This paper proposes a framework for robots, TORP (The Open Robot Project), that aims to put forward a standardization in all dimensions (electrical, mechanical and computational) of a robot shared development model. This architecture is based on the dissociation between the robot and its parts, and between the robot parts and their technologies. In this paper, the first specification for a TORP family and the first humanoid robot constructed following the TORP specification set are presented, as well as the advances proposed for their improvement.
Resumo:
RoboCup was created in 1996 by a group of Japanese, American, and European Artificial Intelligence and Robotics researchers with a formidable, visionary long-term challenge: “By 2050 a team of robot soccer players will beat the human World Cup champion team.” At that time, in the mid 90s, when there were very few effective mobile robots and the Honda P2 humanoid robot was presented to a stunning public for the first time also in 1996, the RoboCup challenge, set as an adversarial game between teams of autonomous robots, was fascinating and exciting. RoboCup enthusiastically and concretely introduced three robot soccer leagues, namely “Simulation,” “Small-Size,” and “Middle-Size,” as we explain below, and organized its first competitions at IJCAI’97 in Nagoya with a surprising number of 100 participants [RC97]. It was the beginning of what became a continously growing research community. RoboCup established itself as a structured organization (the RoboCup Federation www.RoboCup.org). RoboCup fosters annual competition events, where the scientific challenges faced by the researchers are addressed in a setting that is attractive also to the general public. and the RoboCup events are the ones most popular and attended in the research fields of AI and Robotics.RoboCup further includes a technical symposium with contributions relevant to the RoboCup competitions and beyond to the general AI and robotics.
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
This work presents a cooperative navigation systemof a humanoid robot and a wheeled robot using visual information, aiming to navigate the non-instrumented humanoid robot using information obtained from the instrumented wheeled robot. Despite the humanoid not having sensors to its navigation, it can be remotely controlled by infra-red signals. Thus, the wheeled robot can control the humanoid positioning itself behind him and, through visual information, find it and navigate it. The location of the wheeled robot is obtained merging information from odometers and from landmarks detection, using the Extended Kalman Filter. The marks are visually detected, and their features are extracted by image processing. Parameters obtained by image processing are directly used in the Extended Kalman Filter. Thus, while the wheeled robot locates and navigates the humanoid, it also simultaneously calculates its own location and maps the environment (SLAM). The navigation is done through heuristic algorithms based on errors between the actual and desired pose for each robot. The main contribution of this work was the implementation of a cooperative navigation system for two robots based on visual information, which can be extended to other robotic applications, as the ability to control robots without interfering on its hardware, or attaching communication devices
Resumo:
This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots
Resumo:
Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
[EN]In this paper we will present Eldi, a mobile robot that has been in daily operation at the Elder Museum of Science and Technology at Las Palmas de Gran Canaria since December 1999. This is an ongoing project that was organized in three di erent stages, describing here the one that has been accomplished. The initial phase, termed \The Player", the second stage, actually under development, has been called "The Cicerone" and in a nal phase, termed \The Vagabond", Eldi will be allowed to move erratically across the Museum. This paper will focus on the accomplished rst stage to succinctly describe the physical robot and the environment and demos developed. Finally we will summarize some important lessons learnt.
Resumo:
En este artículo se presenta a DeBuPa (Detección Búsqueda Pateo) un humanoide de tamaño pequeño (38 cm de alto) construido con las piezas del kit Bioloid. Del kit se ha excluido la tarjeta CM-510 para sustituirla por la tarjeta controladora Arbotix, que será la que controle los 16 motores Dynamixel Ax-12+ (para mover al robot) y 2 servomotores analógicos (para mover la cámara). Además se ha agregado un mini computador Raspberry Pi, con su cámara, para que el robot pueda detectar y seguir la pelota de forma autónoma. Todos estos componentes deben ser coordinados para que se logre cumplir la tarea de detectar, seguir y patear la pelota. Por ello se hace necesaria la comunicación entre la Arbotix y la Raspberry Pi. La herramienta empleada para ello es el framework ROS (Robot Operating System). En la Raspberry Pi se usa el lenguaje C++ y se ejecuta un solo programa encargado de captar la imagen de la cámara, filtrar y procesar para encontrar la pelota, tomar la decisión de la acción a ejecutar y hacer la petición a la Arbotix para que dé la orden a los motores de ejecutar el movimiento. Para captar la imagen de la cámara se ha utilizado la librería RasPiCam CV. Para filtrar y procesar la imagen se ha usado las librerías de OpenCV. La Arbotix, además de controlar los motores, se encarga de monitorizar que el robot se encuentre balanceado, para ello usa el sensor Gyro de Robotis. Si detecta un desbalance de un cierto tamaño puede saber si se ha caído y levantarse.