954 resultados para Human-melanoma Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing evidence demonstrates that the thrombin receptor (protease activated receptor-1, PAR-1) plays a major role in tumor invasion and contributes to the metastatic phenotype of human melanoma. We demonstrate that the metastatic potential of human melanoma cells correlates with overexpression of PAR-1. The promoter of the PAR-1 gene contains multiple putative AP-2 and Sp1 consensus elements. We provide evidence that an inverse correlation exists between the expression of AP-2 and the expression of PAR-1 in human melanoma cells. Re-expression of AP-2 in WM266-4 melanoma cells (AP-2 negative) resulted in decreased mRNA and protein expression of PAR-1 and significantly reduced the tumor potential in nude mice. ChIP analysis of the PAR-1 promoter regions bp −365 to −329 (complex 1) and bp −206 to −180 (complex 2) demonstrates that in metastatic cells Sp1 is predominantly binding to the PAR-1 promoter, while in nonmetastatic cells AP-2 is bound. In vitro analysis of complex 1 demonstrates that AP-2 and Sp1 bind to this region in a mutually exclusive manner. Transfection experiments with full-length and progressive deletions of the PAR-1 promoter luciferase constructs demonstrated that metastatic cells had increased promoter activity compared to low and nonmetastatic melanoma cells. Our data shows that exogenous AP-2 expression decreased promoter activity, while transient expression of Sp1 further activated expression of the reporter gene. Mutational analysis of complex 1 within PAR-1 luciferase constructs further demonstrates that the regulation of PAR-1 is mediated through interactions with AP-2 and Sp1. Moreover, loss of AP-2 in metastatic cells alters the AP-2 to Sp1 ratio and DNA-binding activity resulting in overexpression of PAR-1. In addition, we evaluated the expression of AP-2 and PAR-1 utilizing a tissue microarray of 93 melanocytic lesions spanning from benign nevi to melanoma metastasis. We report loss of AP-2 expression in malignant tumors compared to benign tissue while PAR-1 was expressed more often in metastatic melanoma cells than in benign melanocytes. We propose that loss of AP-2 results in increased expression of PAR-1, which in turn results in upregulation of gene products that contribute to the metastatic phenotype of melanoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to investigate the role of the c-KIT receptor in the progression of human melanoma and the mechanism(s) for the regulation of c-KIT gene expression in human melanoma.^ The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP) (metastatic phenotype) are not well-defined. Expression of the tyrosine-kinase receptor c-KIT progressively decreases during local tumor growth and invasion of human melanomas. To provide direct evidence that the metastasis of human melanoma is associated with the loss of c-KIT expression, highly metastatic A375SM cells, which express very low or undetectable levels of c-KIT, were tranduced with the human c-KIT gene. We demonstrated that enforced c-KIT expression in highly metastatic human melanoma cells significantly suppressed their tumorigenicity and metastatic propensity in nude mice. In addition, we showed that the ligand for c-KIT, SCF, induces apoptosis in human melanoma cells expressing c-KIT under both in vitro and in vivo conditions. These results suggest that loss of c-KIT receptor may allow malignant melanoma cells to escape SCF/c-KIT-mediated apoptosis, thus contributing to tumor growth and eventually metastasis.^ Furthermore, we investigated the possible mechanism(s) for the down-regulation of c-KIT gene expression in malignant melanoma. Sequence analysis of the c-KIT promoter indicated that this promoter contains several consensus binding-site sequences including three putative AP2 and two Myb sites. Although Myb was shown to be associated with c-KIT expression in human hemotopoietic cells, we found no correlation between c-KIT expression and Myb expression in human melanoma cell lines. In contrast, we showed that c-KIT expression directly correlates with expression of AP2 in human melanoma cells. We found that highly metastatic cells do not express the transcription factor AP2. Expression of AP2 in A375SM cells (c-KIT-negative and AP2-negative) was enough to restore luciferase activity driven by the c-KIT promoter in a dose-dependent manner. On the other hand, co-expression of the dominant-negative form of AP2 (AP2B) in Mel-501 cells (c-KIT-positive and AP2-positive) resulted in two-fold reduction in luciferase activity. Electrophoretic mobility shift assays revealed that the c-KIT promoter contains functional AP2 binding sites which could associate with AP2 protein. Endogenous c-KIT gene expression levels were elevated in AP2 stably-transfected human melanoma A375SM cells. Expression of exogenous AP2 in A375SM cells inhibited their tumorigenicity and metastatic potential in nude mice. The c-KIT ligand, SCF, also induced apoptosis in the AP2 stably-transfected A375SM cells. The identification of AP2 as an important regulator for c-KIT expression suggests that AP2 may have tumor growth and metastasis inhibitory properties, possibly mediated through c-KIT/SCF effects on apoptosis of human melanoma cells. Since AP2 binding sites were found in the promoters of other genes involved in the progression of human melanoma, such as MMP2 (72 kDa collagenase), MCAM/MUC18 and P21/WAF-1, our findings suggest that loss of AP2 expression might be a crucial event in the development of malignant melanoma. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During past decades, knowledge of melanoma biology has increased considerably. Numerous therapeutic modalities based on this knowledge are currently under investigation. Advanced melanoma, nevertheless, remains a prime example of poor treatment response that may, in part, be the consequence of activated N-Ras oncoproteins. Besides oncogenic Ras, wild-type Ras gene products also play a key role in receptor tyrosine kinase growth factor signaling, known to be of importance in oncogenesis and tumor progression of a variety of human neoplasms, including malignant melanoma; therefore, it is reasonable to speculate that a pharmacological approach that curtails Ras activity may represent a sensible approach to inhibit melanoma growth. To test this concept, the antitumor activity of S-trans, trans-farnesylthiosalicylic acid (FTS), a recently discovered Ras antagonist that dislodges Ras from its membrane-anchoring sites, was evaluated. The antitumor activity of FTS was assessed both in vitro and in vivo in two independent SCID mouse xenotransplantation models of human melanoma expressing either wild-type Ras (cell line 518A2) or activated Ras (cell line 607B). We show that FTS (5–50 μM) reduces the amounts of activated N-Ras and wild-type Ras isoforms both in human melanoma cells and Rat-1 fibroblasts, interrupts the Ras-dependent extracellular signal-regulated kinase in melanoma cells, inhibits the growth of N-Ras-transformed fibroblasts and human melanoma cells in vitro and reverses their transformed phenotype. FTS also causes a profound and statistically significant inhibition of 518A2 (82%) and 607B (90%) human melanoma growth in SCID mice without evidence of drug-related toxicity. Our findings stress the notion that FTS may qualify as a novel and rational treatment approach for human melanoma and possibly other tumors that either carry activated ras genes or rely on Ras signal transduction more heavily than nonmalignant cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the beta(3) integrin subunit in melanoma in situ has been found to correlate with tumor thickness, the ability to invade and metastasize, and poor prognosis. Transition from the radial growth phase (RGP) to the vertical growth phase (VGP) is a critical step in melanoma progression and survival and is distinguished by the expression of beta(3), integrin. The molecular pathways that operate in melanoma cells associated with invasion and metastasis were examined by ectopic induction of the beta(3), integrin subunit in RGP SBcl2 and WM1552C melanoma cells, which converts these cells to a VGP phenotype. We used cDNA representational difference analysis subtractive hybridization between beta(3)-Positive and -negative melanoma cells to assess gene expression profile changes accompanying RGP to VGP transition. Fourteen fragments from known genes including osteonectin (also known as SPARC and BM-40) were identified after three rounds of representational difference analysis. Induction of osteonectin was confirmed by Northern and Western blot analysis and immunohistochemistry and correlated in organotypic cultures with the beta(3)-induced progression from RGP to VGP melanoma. Expression of osteonectin was also associated with reduced adhesion to vitronectin, but not to fibronectin. Osteonectin expression was not blocked when melanoma cells were cultured with anti-alpha(v)beta(3) LM609 mAb, mitogen-activated protein kinase, or protein kinase C inhibitors, indicating that other signaling pathway(s) operate through a(v)beta(3) integrin during conversion from RGP to VGP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: As compared with natural tumor peptide sequences, carefully selected analog peptides may be more immunogenic and thus better suited for vaccination. However, T cells in vivo activated by such altered analog peptides may not necessarily be tumor specific because sequence and structure of peptide analogs differ from corresponding natural peptides. EXPERIMENTAL DESIGN: Three melanoma patients were immunized with a Melan-A peptide analog that binds more strongly to HLA-A*0201 and is more immunogenic than the natural sequence. This peptide was injected together with a saponin-based adjuvant, followed by surgical removal of lymph node(s) draining the site of vaccination. RESULTS: Ex vivo analysis of vaccine site draining lymph nodes revealed antigen-specific CD8+ T cells, which had differentiated to memory cells. In vitro, these cells showed accelerated proliferation upon peptide stimulation. Nearly all (16 of 17) of Melan-A-specific CD8+ T-cell clones generated from these lymph nodes efficiently killed melanoma cells. CONCLUSIONS: Patient immunization with the analog peptide leads to in vivo activation of T cells that were specific for the natural tumor antigen, demonstrating the usefulness of the analog peptide for melanoma immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relatively low frequencies of tumor Ag-specific T-cells in PBMC and metastases from cancer patients have long precluded the analysis of their direct ex vivo cytolytic capacity. Using a new composite technique that works well with low cell numbers, we aimed at determining the functional competence of melanoma-specific CD8(+) T-cells. A multiparameter flow cytometry based technique was applied to assess the cytolytic function, degranulation and IFNγ production by tumor Ag-specific CD8(+) T-cells from PBMC and tumor-infiltrated lymph nodes (TILN) of melanoma patients. We found strong cytotoxicity by T-cells not only when they were isolated from PBMC but also from TILN. Cytotoxicity was observed against peptide-pulsed target cells and melanoma cells presenting the naturally processed endogenous antigen. However, unlike their PBMC-derived counterparts, T-cells from TILN produced only minimal amounts of IFNγ, while exhibiting similar levels of degranulation, revealing a critical functional dichotomy in metastatic lesions. Our finding of partial functional impairment fits well with the current knowledge that T-cells from cancer metastases are so-called exhausted, a state of T-cell hyporesponsiveness also found in chronic viral infections. The identification of responsible mechanisms in the tumor microenvironment is important for improving cancer therapies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HLA-A2-restricted cytolytic T cells specific for the immunodominant human tumor Ag Melan-A(MART-1) can kill most HLA-matched melanoma cells, through recognition of two naturally occurring antigenic variants, i.e., Melan-A nonamer AAGIGILTV and decamer EAAGIGILTV peptides. Several previous studies have suggested a high degree of TCR cross-reactivity to the two peptides. In this study, we describe for the first time that some T cell clones are exclusively nonamer specific, because they are not labeled by A2/decamer-tetramers and do not recognize the decamer when presented endogenously. Functional assays with peptides gave misleading results, possibly because decamers were cleaved by exopeptidases. Interestingly, nonapeptide-specific T cell clones were rarely Valpha2.1 positive (only 1 of 19 clones), in contrast to the known strong bias for Valpha2.1-positive TCRs found in decamer-specific clones (59 of 69 clones). Molecular modeling revealed that nonapeptide-specific TCRs formed unfavorable interactions with the decapeptide, whereas decapeptide-specific TCRs productively created a hydrogen bond between CDR1alpha and glutamic acid (E) of the decapeptide. Ex vivo analysis of T cells from melanoma metastases demonstrated that both nonamer and decamer-specific T cells were enriched to substantial frequencies in vivo, and representative clones showed efficient tumor cell recognition and killing. We conclude that the two peptides should be regarded as distinct epitopes when analyzing tumor immunity and developing immunotherapy against melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A correlation between cancer and prothrombotic states has long been described. More recently, a number of studies have focused on the procoagulant mechanisms exhibited by tumor cells. In the present study, we dissected the molecular mechanisms responsible for the procoagulant activity of MV3, a highly aggressive human melanoma cell line. It was observed that tumor cells strongly accelerate plasma coagulation as a result of: i) expression of the blood clotting initiator protein, a tissue factor, as shown by flow cytometry and functional assays (factor Xa formation in the presence of cells and factor VIIa), and ii) direct activation of prothrombin to thrombin by cells, as evidenced by hydrolysis of the synthetic substrate, S-2238, and the natural substrate, fibrinogen. This ability was highly potentiated by the addition of exogenous factor Va, which functions as a co-factor for the enzyme factor Xa. In contrast, prothrombin activation was not observed when cells were previously incubated with DEGR-factor Xa, an inactive derivative of the enzyme. Moreover, a monoclonal antibody against bovine factor Xa reduced the prothrombin-converting activity of tumor cells. In conclusion, the data strongly suggest that MV3 cells recruit factor Xa from the culture medium, triggering an uncommon procoagulant mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a Phase I clinical trial investigating the biologic activity of vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte–macrophage colony-stimulating factor in patients with metastatic melanoma. Immunization sites were intensely infiltrated with T lymphocytes, dendritic cells, macrophages, and eosinophils in all 21 evaluable patients. Although metastatic lesions resected before vaccination were minimally infiltrated with cells of the immune system in all patients, metastatic lesions resected after vaccination were densely infiltrated with T lymphocytes and plasma cells and showed extensive tumor destruction (at least 80%), fibrosis, and edema in 11 of 16 patients examined. Antimelanoma cytotoxic T cell and antibody responses were associated with tumor destruction. These results demonstrate that vaccination with irradiated autologous melanoma cells engineered to secrete granulocyte–macrophage colony-stimulating factor stimulates potent antitumor immunity in humans with metastatic melanoma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

alpha-Melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected REK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new platinum(II) complex with the amino acid L-tryptophan (trp), named Pt-trp, was synthesized and characterized. Elemental, thermogravimetric and ESI-QTOF mass spectrometric analyses led to the composition [Pt(C11H11N2O2)2]⋅6H2O. Infrared spectroscopic data indicate the coordination of trp to Pt(II) through the oxygen of the carboxylate group and also through the nitrogen atom of the amino group. The (13)C CP/MAS NMR spectroscopic data confirm coordination through the oxygen atom of the carboxylate group, while the (15)N CP/MAS NMR data confirm coordination of the nitrogen of the NH2 group to the metal. Density functional theory (DFT) studies were applied to evaluate the cis and trans coordination modes of trp to platinum(II). The trans isomer was shown to be energetically more stable than the cis one. The Pt-trp complex was evaluated as a cytotoxic agent against SK-Mel 103 (human melanoma) and Panc-1 (human pancreatic carcinoma) cell lines. The complex was shown to be cytotoxic over the considered cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers including cutaneous melanoma, in which its levels of expression are associated with a poor prognosis and depth of invasion. Recently, we have demonstrated the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Herein we compare, via electrospray ionization mass spectrometry (ESI-MS), free fatty acids (FFA) composition of mitochondria isolated from control (EtOH-treated cells) and Orlistat-treated B16-F10 mouse melanoma cells. Principal component analysis (PCA) was applied to the ESI-MS data and found to separate the two groups of samples. Mitochondria from control cells showed predominance of six ions, that is, those of m/z 157 (Pelargonic, 9:0), 255 (Palmitic, 16:0), 281 (Oleic, 18:1), 311 (Arachidic, 20:0), 327 (Docosahexaenoic, 22:6) and 339 (Behenic, 22:0). In contrast, FASN inhibition with Orlistat changes significantly mitochondrial FFA composition by reducing synthesis of palmitic acid, and its elongation and unsaturation products, such as arachidic and behenic acids, and oleic acid, respectively. ESI-MS of mitochondria isolated from Orlistat-treated cells presented therefore three major ions of m/z 157 (Pelargonic, 9:0), 193 (unknown) and 199 (Lauric, 12:0). These findings demonstrate therefore that FASN inhibition by Orlistat induces significant changes in the FFA composition of mitochondria. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acid synthase (FASN) is the metabolic enzyme responsible for the endogenous synthesis of the saturated long-chain fatty acid, palmitate. In contrast to most normal cells, FASN is overexpressed in a variety of human cancers, including cutaneous melanoma, in which its levels of expression are associated with tumor invasion and poor prognosis. We have previously shown that FASN inhibition with orlistat significantly reduces the number of spontaneous mediastinal lymph node metastases following the implantation of B16-F10 mouse melanoma cells in the peritoneal cavity of C57BL/6 mice. In this study, we investigate the biological mechanisms responsible for the FASN inhibition-induced apoptosis in B16-F10 cells. Both FASN inhibitors, cerulenin and orlistat, significantly reduced melanoma cell proliferation and activated the intrinsic pathway of apoptosis, as demonstrated by the cytochrome c release and caspase-9 and -3 activation. Further, apoptosis was preceded by an increase in both reactive oxygen species production and cytosolic calcium concentrations and independent of p53 activation and mitochondrial permeability transition. Taken together, these findings demonstrate the mitochondrial involvement in FASN inhibition-induced apoptosis in melanoma cells. Laboratory Investigation (2011) 91, 232-240; doi:10.1038/labinvest.2010.157; published online 30 August 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the photodynamic action of liposomes (LP) and nanocapsules (NC) containing Chloroaluminum phthalocyanine (CIAIPc), on the human melanoma cell (WM 1552C), was assessed. The light source was setup at 672 nm, which corresponds to the maximum absorption wavelength of the CIAIPc. Both colloidal carriers presented size in nanometric scale as well as negative zeta potential. The cellular damage was light dose dependent ranging from 30% of cell death at 70 mJ.cm(-2) to 90% of death at 700 mJ.cm(-2). However, the photocytotoxic effect of LP at 70 mJ.cm(-2) was slightly more efficient to induce cellular death than NC formulation. At 140 mJ.cm(-2), and 700 mJ.cm(-2) both nanocarriers were equally efficient to induce cellular damage. Therefore, in the present work, the maximum phototoxic effect was obtained with 700 mJ.cm(-2) of light dose, in combination with 0.29 mu g.mL(-1) of CIAIPc encapsulated into LP and NC. The cells were also positive to annexin V, after the PDT treatment with LP and NC, showing that one of the mechanisms of cellular death involved is apoptosis. In summary, the potential of LP and NC as a drug delivery system, in Photodynamic Therapy (PDT) against melanoma, has been confirmed using a lower concentration of the photosensitizer and lower light doses than that applied in current protocols. This is an innovative proposal to treat melanoma cell lines that until now have not received the benefit of the PDT protocol for treatment.