916 resultados para Human genome


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gap junctions serve for direct intercellular communication by docking of two hemichannels in adjacent cells thereby forming conduits between the cytoplasmic compartments of adjacent cells. Connexin genes code for subunit proteins of gap junction channels and are members of large gene families in mammals. So far, 17 connexin (Cx) genes have been described and characterized in the murine genome. For most of them, orthologues in the human genome have been found (see White and Paul 1999; Manthey et al. 1999; Teubner et al. 2001; Söhl et al. 2001). We have recently performed searches for connexin genes in murine and human gene libraries available at EMBL/Heidelberg, NCBI and the Celera company that have increased the number of identified connexins to 19 in mouse and 20 in humans. For one mouse connexin gene and two human connexin genes we did not find orthologues in the other genome. Here we present a short overview on distinct connexin genes which we found in the mouse and human genome and which may include all members of this gene family, if no further connexin gene will be discovered in the remaining non-sequenced parts (about 1-5%) of the genomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human x rodent somatic cell hybrids have played an important role in human genetics research. They have been especially useful for assigning genes to chromosomes and isolating DNA markers from specific regions of the human genome.^ By employing a combination of somatic cell genetic, recombinant DNA, and cytogenetic techniques, human DNA excision repair gene ERCC4 was mapped regionally to human 16p13.13-13.2, even though the gene has not been cloned. Human x Chinese hamster ovary (CHO) cell hybrids selected for human ERCC4 activity and containing 16p13.1-p13.3 as the only human genetic material were identified. These hybrids were used to order DNA markers located in 16p13.1-p13.3. New DNA markers physically close to ERCC4 were isolated from such hybrids. Using amplified human DNA from the hybrids as probe in fluorescent in situ hybridization, the short arm breakpoint in the chromosome 16 inversion associated with acute myelomonocytic leukemia (AMML) was found to be physically close to the ERCC4 gene. The physical mapping and eventually, the cloning of the ERCC4 gene, will benefit the understanding of the DNA repair system and the study of other important biomedical problems such as tumorigenesis.^ To facilitate the cloning of ERCC4 gene and, in general, the cloning of genes from any defined regions of the human genome, a method was developed for the direct isolation of human transcribed genes ffom somatic cell hybrids. cDNA was prepared from human x rodent hybrid by using consensus 5$\sp\prime$ splice site sequences as primers. These primers were designed to select immature, unspliced messenger RNA (still retaining species specific repeat sequences) as templates. Screening of a derived cDNA library for human repeat sequences resulted in the isolation of human clones at the anticipated frequency with characteristics expected of exons of transcribed human genes. The usefulness of the splice site specific primers was analyzed and the cDNA synthesis conditions with these primers were optimized. The procedure was shown to be sensitive enough to clone weakly expressed genes. Studying the expression of the represented genes with the isolated clones was shown to be feasible. Such regional specific human gene fragments will be very valuable for many human genetic studies such as the search of inherited disease genes and the construction of a cDNA map of the human genome. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Idiotype conservation between human and mouse antibodies has been observed in association with various infectious and autoimmune diseases. We have isolated a human anti-idiotypic antibody to a mouse monoclonal anti-IgE antibody (BSW17) suggesting a conserved interspecies idiotype associated with an anti-IgE response. To find the homologue of BSW17 in the human genome we applied the guided selection strategy. Combining V(H) of BSW17 with a human V(L) repertoire resulted in three light chains. The three V(L) chains were then combined with a human V(H) repertoire resulting in three clones specific for human IgE. Surprisingly, one clone, Hu41, had the same epitope specificity and functional in vitro activity as BSW17 and V(H) complementarity-determining regions identical with that of BSW17. Real-time PCR analysis confirmed the presence of the Hu41 V(H) sequence in the human genome. These data document the first example of the isolation of a human antibody where high sequence similarity to the original murine V(H) sequence is associated with common antigen and epitope specificity.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microarrays containing 1046 human cDNAs of unknown sequence were printed on glass with high-speed robotics. These 1.0-cm2 DNA "chips" were used to quantitatively monitor differential expression of the cognate human genes using a highly sensitive two-color hybridization assay. Array elements that displayed differential expression patterns under given experimental conditions were characterized by sequencing. The identification of known and novel heat shock and phorbol ester-regulated genes in human T cells demonstrates the sensitivity of the assay. Parallel gene analysis with microarrays provides a rapid and efficient method for large-scale human gene discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microsatellites are tandem repeat sequences abundant in the genomes of higher eukaryotes and hitherto considered as "junk DNA." Analysis of a human genome representative data base (2.84 Mb) reveals a distinct juxtaposition of A-rich microsatellites and retroposons and suggests their coevolution. The analysis implies that most microsatellites were generated by a 3'-extension of retrotranscripts, similar to mRNA polyadenylylation, and that they serve in turn as "retroposition navigators," directing the retroposons via homology-driven integration into defined sites. Thus, they became instrumental in the preservation and extension of primordial genomic patterns. A role is assigned to these reiterating A-rich loci in the higher-order organization of the chromatin. The disease-associated triplet repeats are mostly found in coding regions and do not show an association with retroposons, constituting a unique set within the family of microsatellite sequences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report several classes of human interspersed repeats that resemble fossils of DNA transposons, elements that move by excision and reintegration in the genome, whereas previously characterized mammalian repeats all appear to have accumulated by retrotransposition, which involves an RNA intermediate. The human genome contains at least 14 families and > 100,000 degenerate copies of short (180-1200 bp) elements that have 14- to 25-bp terminal inverted repeats and are flanked by either 8 bp or TA target site duplications. We describe two ancient 2.5-kb elements with coding capacity, Tigger1 and -2, that closely resemble pogo, a DNA transposon in Drosophila, and probably were responsible for the distribution of some of the short elements. The deduced pogo and Tigger proteins are related to products of five DNA transposons found in fungi and nematodes, and more distantly, to the Tc1 and mariner transposases. They also are very similar to the major mammalian centromere protein CENP-B, suggesting that this may have a transposase origin. We further identified relatively low-copy-number mariner elements in both human and sheep DNA. These belong to two subfamilies previously identified in insect genomes, suggesting lateral transfer between diverse species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe the accomplishments of the initial phase of the Human Genome Project, with particular attention to the progress made toward achieving the defined goals for constructing genetic and physical maps of the human genome and determining the sequence of human DNA, identifying the complete set of human genes, and analyzing the need for adequate policies for using the information about human genetics in ways that maximize the benefits for individuals and society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Description based on: March 1993; title from cover.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are 481 segments longer than 200 base pairs (bp) that are absolutely conserved (100% identity with no insertions or deletions) between orthologous regions of the human, rat, and mouse genomes. Nearly all of these segments are also conserved in the chicken and dog genomes, with an average of 95 and 99% identity, respectively. Many are also significantly conserved in fish. These ultraconserved elements of the human genome are most often located either overlapping exons in genes involved in RNA processing or in introns or nearby genes involved in the regulation of transcription and development. Along with more than 5000 sequences of over 100 bp that are absolutely conserved among the three sequenced mammals, these represent a class of genetic elements whose functions and evolutionary origins are yet to be determined, but which are more highly conserved between these species than are proteins and appear to be essential for the ontogeny of mammals and other vertebrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mapping and sequencing of the human genome has generated a large resource for answering questions about human disease. This achievement is akin in scientific importance to developing the periodic table of elements. Plastic surgery has always been at the frontier medical research. This resource will help us to improve our understanding on the many unknown physiological and pathogical conditions we deal with daily, such as wound heating keloid scar formation, Dupuytren's disease, rheumatoid arthritis, vascular malformation and carcinogenesis. We are primed in obtaining both disease and normal tissues to use this resource and applying it to clinical use. This review is about the human genome, the basis of gene expression profiling and how it will affect our clinical and research practices in the future and for those embarking on the use of this new technology as a research tool, we provide a brief insight on its limitations and pitfalls. (C) 2006 The British Association of Plastic Surgeons. Published by Elsevier Ltd. All rights reserved.