877 resultados para Human behaviour recognition
Resumo:
Environmental change research often relies on simplistic, static models of human behaviour in social-ecological systems. This limits understanding of how social-ecological change occurs. Integrative, process-based behavioural models, which include feedbacks between action, and social and ecological system structures and dynamics, can inform dynamic policy assessment in which decision making is internalised in the model. These models focus on dynamics rather than states. They stimulate new questions and foster interdisciplinarity between and within the natural and social sciences.
Resumo:
For general home monitoring, a system should automatically interpret people’s actions. The system should be non-intrusive, and able to deal with a cluttered background, and loose clothes. An approach based on spatio-temporal local features and a Bag-of-Words (BoW) model is proposed for single-person action recognition from combined intensity and depth images. To restore the temporal structure lost in the traditional BoW method, a dynamic time alignment technique with temporal binning is applied in this work, which has not been previously implemented in the literature for human action recognition on depth imagery. A novel human action dataset with depth data has been created using two Microsoft Kinect sensors. The ReadingAct dataset contains 20 subjects and 19 actions for a total of 2340 videos. To investigate the effect of using depth images and the proposed method, testing was conducted on three depth datasets, and the proposed method was compared to traditional Bag-of-Words methods. Results showed that the proposed method improves recognition accuracy when adding depth to the conventional intensity data, and has advantages when dealing with long actions.
Resumo:
This voluminous book which draws on almost 1000 references provides an important theoretical base for practice. After an informative introduction about models, maps and metaphors, Forte provides an impressive presentation of several perspectives for use in practice; applied ecological theory, applied system theory, applied biology, applied cognitive science, applied psychodynamic theory, applied behaviourism, applied symbolic interactionism, applied social role theory, applied economic theory, and applied critical theory. Finally he completes his book with a chapter on “Multi theory practice and routes to integration.”
Resumo:
Human Activity Recognition (HAR) is an emerging research field with the aim to identify the actions carried out by a person given a set of observations and the surrounding environment. The wide growth in this research field inside the scientific community is mainly explained by the high number of applications that are arising in the last years. A great part of the most promising applications are related to the healthcare field, where it is possible to track the mobility of patients with motor dysfunction as also the physical activity in patients with cardiovascular risk. Until a few years ago, by using distinct kind of sensors, a patient follow-up was possible. However, far from being a long-term solution and with the smartphone irruption, that monitoring can be achieved in a non-invasive way by using the embedded smartphone’s sensors. For these reasons this Final Degree Project arises with the main target to evaluate new feature extraction techniques in order to carry out an activity and user recognition, and also an activity segmentation. The recognition is done thanks to the inertial signals integration obtained by two widespread sensors in the greater part of smartphones: accelerometer and gyroscope. In particular, six different activities are evaluated walking, walking-upstairs, walking-downstairs, sitting, standing and lying. Furthermore, a segmentation task is carried out taking into account the activities performed by thirty users. This can be done by using Hidden Markov Models and also a set of tools tested satisfactory in speech recognition: HTK (Hidden Markov Model Toolkit).
Resumo:
El Reconocimiento de Actividades Humanas es un área de investigación emergente, cuyo objetivo principal es identificar las acciones realizadas por un sujeto analizando las señales obtenidas a partir de unos sensores. El rápido crecimiento de este área de investigación dentro de la comunidad científica se explica, en parte, por el elevado número de aplicaciones que están surgiendo en los últimos años. Gran parte de las aplicaciones más prometedoras se encuentran en el campo de la salud, donde se puede hacer un seguimiento del nivel de movilidad de pacientes con trastornos motores, así como monitorizar el nivel de actividad física en pacientes con riesgo cardiovascular. Hasta hace unos años, mediante el uso de distintos tipos de sensores se podía hacer un seguimiento del paciente. Sin embargo, lejos de ser una solución a largo plazo y gracias a la irrupción del teléfono inteligente, este seguimiento se puede hacer de una manera menos invasiva, haciendo uso de la gran variedad de sensores integrados en este tipo de dispositivos. En este contexto nace este Trabajo de Fin de Grado, cuyo principal objetivo es evaluar nuevas técnicas de extracción de características para llevar a cabo un reconocimiento de actividades y usuarios así como una segmentación de aquellas. Este reconocimiento se hace posible mediante la integración de señales inerciales obtenidas por dos sensores presentes en la gran mayoría de teléfonos inteligentes: acelerómetro y giróscopo. Concretamente, se evalúan seis tipos de actividades realizadas por treinta usuarios: andar, subir escaleras, bajar escaleras, estar sentado, estar de pie y estar tumbado. Además y de forma paralela, se realiza una segmentación temporal de los distintos tipos de actividades realizadas por dichos usuarios. Todo ello se llevará a cabo haciendo uso de los Modelos Ocultos de Markov, así como de un conjunto de herramientas probadas satisfactoriamente en reconocimiento del habla: HTK (Hidden Markov Model Toolkit).
Resumo:
Combinatorial IgG Fab phage display libraries prepared from a systemic lupus erythematosus (SLE) donor and a healthy donor were affinity selected against human placental DNA. Human monoclonal antibody Fab fragments specific for DNA were isolated from both libraries, although Fabs of the highest affinity were isolated only from the lupus library. Generally, apparent affinities of the Fabs for human placental DNA, purified double-stranded DNA, and denatured DNA were approximately equivalent. Surface plasmon resonance indicated Fab binding constants for a double-stranded oligodeoxynucleotide of 0.2-1.3 x 10(8) M-1. The higher-affinity Fabs, as ranked by binding to human placental DNA or to the oligonucleotide probe, tested positive in the Crithidia luciliae assay commonly used in the diagnosis of SLE, and interestingly the genes encoding the heavy-chain variable regions of these antibodies displayed evidence of only minimal somatic hypermutation. The heavy chains of the SLE Fabs were characterized by a predominance of basic residues toward the N terminus of complementarity-determining region 3 (CDR3). The crucial role of heavy-chain CDR3 (HCDR3) in high-affinity DNA recognition was suggested by the creation of DNA binding in an unrelated antibody by HCDR3 transplantation from SLE antibodies. We propose that high-affinity DNA-binding antibodies can arise in SLE without extensive somatic hypermutation in the variable-region genes because of the expression of inappropriate HCDR3s.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
'Free will' and its corollary, the concept of individual responsibility are keystones of the justice system. This paper shows that if we accept a physics that disallows time reversal, the concept of 'free will' is undermined by an integrated understanding of the influence of genetics and environment on human behavioural responses. Analysis is undertaken by modelling life as a novel statistico-deterministic version of a Turing machine, i.e. as a series of transitions between states at successive instants of time. Using this model it is proven by induction that the entire course of life is independent of the action of free will. Although determined by prior state, the probability of transitions between states in response to a standard environmental stimulus is not equal to 1 and the transitions may differ quantitatively at the molecular level and qualitatively at the level of the whole organism. Transitions between states correspond to behaviours. It is shown that the behaviour of identical twins (or clones), although determined, would be incompletely predictable and non-identical, creating an illusion of the operation of 'free will'. 'Free will' is a convenient construct for current judicial systems and social control because it allows rationalization of punishment for those whose behaviour falls outside socially defined norms. Indeed, it is conceivable that maintenance of ideas of free will has co-evolved with community morality to reinforce its operation. If the concept is free will is to be maintained it would require revision of our current physical theories.
Resumo:
As more of the economy moves from traditional manufacturing to the service sector, the nature of work is becoming less tangible and thus, the representation of human behaviour in models is becoming more important. Representing human behaviour and decision making in models is challenging, both in terms of capturing the essence of the processes, and also the way that those behaviours and decisions are or can be represented in the models themselves. In order to advance understanding in this area, a useful first step is to evaluate and start to classify the various types of behaviour and decision making that are required to be modelled. This talk will attempt to set out and provide an initial classification of the different types of behaviour and decision making that a modeller might want to represent in a model. Then, it will be useful to start to assess the main methods of simulation in terms of their capability in representing these various aspects. The three main simulation methods, System Dynamics, Agent Based Modelling and Discrete Event Simulation all achieve this to varying degrees. There is some evidence that all three methods can, within limits, represent the key aspects of the system being modelled. The three simulation approaches are then assessed for their suitability in modelling these various aspects. Illustration of behavioural modelling will be provided from cases in supply chain management, evacuation modelling and rail disruption.