917 resultados para Human Umbilical Vein Endothelial Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Background Endothelial cells play an important role in the delivery of cells to the inflammation site, chemotaxis, cell adhesion and extravasation. Implantation of a foreign material into the human body determines inflammatory and repair reactions, involving different cell types with a plethora of released chemical mediators. The evaluation of the interaction of endothelial cells and implanted materials must take into account other parameters in addition to the analysis of maintenance of cell viability. Methods In the present investigation, we examined the behavior of human umbilical vein endothelial cells (HUVECs) harvested on titanium (Ti), using histological and immunohistochemical methods. The cells, after two passages, were seeded in a standard density on commercially plate-shaped titanium pieces, and maintained for 1, 7 or 14 days. Results After 14 days, we could observe a confluent monolayer of endothelial cells (ECs) on the titanium surface. Upon one-day Ti/cell contact the expression of fibronectin was predominantly cytoplasmatic and stronger than on the control surface. It was observed strong and uniform cell expression along the time of α5β1 integrin on the cells in contact with titanium. Conclusion The attachment of ECs on titanium was found to be related to cellular-derived fibronectin and the binding to its specific receptor, the α5β1 integrin. It was observed that titanium effectively serves as a suitable substrate for endothelial cell attachment, growth and proliferation. However, upon a 7-day contact with Ti, the Weibel-Palade bodies appeared to be not fully processed and exhibited an anomalous morphology, with corresponding alterations of PECAM-1 localization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Endothelial Progenitor Cells (EPC) support neovascularization and regeneration of injured endothelium both by providing a proliferative cell pool capable of differentiation into mature vascular endothelial cells and by secretion of angiogenic growth factors. OBJECTIVE: The aim of this study was to investigate the role of PDGF-BB and PDGFR in EPC-mediated angiogenesis of differentiated endothelial cells. METHODS AND RESULTS: Conditioned medium from human EPC (EPC-CM) cultured in hypoxic conditions contained substantially higher levels of PDGF-BB as compared to normoxic conditions (P<0.01). EPC-CM increased proliferation (1.39-fold; P<0.001) and migration (2.13-fold; P<0.001) of isolated human umbilical vein endothelial cells (HUVEC), as well as sprouting of vascular structures from ex vivo cultured aortic rings (2.78-fold increase; P = 0.01). The capacity of EPC-CM to modulate the PDGFR expression in HUVEC was assessed by western blot and RT-PCR. All the pro-angiogenic effects of EPC-CM on HUVEC could be partially inhibited by inactivation of PDGFR (P<0.01). EPC-CM triggered a distinct up-regulation of PDGFR (2.5±0.5; P<0.05) and its phosphorylation (3.6±0.6; P<0.05) in HUVEC. This was not observed after exposure of HUVEC to recombinant human PDGF-BB alone. CONCLUSION: These data indicate that EPC-CM sensitize endothelial cells and induce a pro-angiogenic phenotype including the up-regulation of PDGFR , thereby turning the PDGF/PDGFR signaling-axis into a critical element of EPC-induced endothelial angiogenesis. This finding may be utilized to enhance EPC-based therapy of ischemic tissue in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endothelial-selective delivery of therapeutic agents, such as drugs or genes, would provide a useful tool for modifying vascular function in various disease states. A potential molecular target for such delivery is E-selectin, an endothelial-specific cell surface molecule expressed at sites of activation in vivo and inducible in cultured human umbilical vein endothelial cells (HUVEC) by treatment with cytokines such as recombinant human interleukin 1β (IL-1β). Liposomes of various types (classical, sterically stabilized, cationic, pH-sensitive), each conjugated with mAb H18/7, a murine monoclonal antibody that recognizes the extracellular domain of E-selectin, bound selectively and specifically to IL-1β-activated HUVEC at levels up to 275-fold higher than to unactivated HUVEC. E-selectin-targeted immunoliposomes appeared in acidic, perinuclear vesicles 2–4 hr after binding to the cell surface, consistent with internalization via the endosome/lysosome pathway. Activated HUVEC incubated with E-selectin-targeted immunoliposomes, loaded with the cytotoxic agent doxorubicin, exhibited significantly decreased cell survival, whereas unactivated HUVEC were unaffected by such treatment. These results demonstrate the feasibility of exploiting cell surface activation markers for the endothelial-selective delivery of biologically active agents via immunoliposomes. Application of this targeting approach in vivo may lead to novel therapeutic strategies in the treatment of cardiovascular disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor-derived adhesion factor (TAF) was previously identified as a cell adhesion molecule secreted by human bladder carcinoma cell line EJ-1. To elucidate the physiological function of TAF, we examined its distribution in human normal and tumor tissues. Immunochemical staining with an anti-TAF monoclonal antibody showed that TAF was specifically accumulated in small blood vessels and capillaries within and adjacent to tumor nests, but not in those in normal tissues. Tumor blood vessel-specific staining of TAF was observed in various human cancers, such as esophagus, brain, lung, and stomach cancers. Double immunofluorescent staining showed apparent colocalization of TAF and type IV collagen in the vascular basement membrane. In vitro experiments demonstrated that TAF preferentially bound to type IV collagen among various extracellular matrix components tested. In cell culture experiments, TAF promoted adhesion of human umbilical vein endothelial cells to type IV collagen substrate and induced their morphological change. Furthermore, when the endothelial cells were induced to form capillary tube-like structures by type I collagen, TAF and type IV collagen were exclusively detected on the tubular structures. The capillary tube formation in vitro was prevented by heparin, which inhibited the binding of TAF to the endothelial cells. These results strongly suggest that TAF contributes to the organization of new capillary vessels in tumor tissues by modulating the interaction of endothelial cells with type IV collagen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently reported that methionine-loaded human umbilical vein endothelial cells (HUVECs) exported homocysteine (Hcy) and were associated with hydroxyl radical generation and oxidation of lipids in LDL. Herein we have analysed the Hcy-induced posttranslational modifications (PTMs) of LDL protein. PTMs have been characterised using electrophoretic mobility shift, protein carbonyl ELISA, HPLC with electrochemical detection and Western blotting of 3-nitrotyrosine, and LDL uptake by scavenger receptors on monocyte/macrophages. We have also analysed PTMs in LDL isolated from rheumatoid (RA) and osteo-(OA) arthritis patients with cardiovascular disease (CVD). While reagent Hcy (<50 μM) promoted copper-catalysed LDL protein oxidation, Hcy released from methionine-loaded HUVECs promoted LDL protein nitration. In addition, LDL nitration was associated with enhanced monocyte/macrophage uptake when compared with LDL oxidation. LDL protein nitration and uptake by monocytes, but not carbonyl formation, was elevated in both RA and OA patients with CVD compared with disease-matched patients that had no evidence of CVD. Moreover, a direct correlation between plasma total Hcy (tHcy) and LDL uptake was observed. The present studies suggest that elevated plasma tHcy may promote LDL nitration and increased scavenger receptor uptake, providing a molecular mechanism that may contribute to the clinical link between CVD and elevated plasma tHcy. © 2005 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: Delayed graft revascularization impedes the success of human islet transplantation. This study utilized rotational co-culture of insulin secreting ß-cells with human umbilical vein endothelial cells (HUVECs) and a peroxisome proliferator-activated receptor gamma (PPAR-?) agonist to promote insulin and vascular endothelial growth factor (VEGF) secretory function. Methods: Clonal BRIN-BD11 (D11) cells were maintained in static culture (SC) and rotational culture (RC) ± HUVEC and ± the TZD (thiazolidinedione) rosiglitazone (10 mmol/l) as a specific PPAR-? agonist. HUVECs were cultured in SC and RC ± D11 and ± TZD. D11 insulin secretion was induced by static incubation with low glucose (1.67 mmol/l), high glucose (16.7 mmol/l) and high glucose with 10 mmol/l theophylline (G+T) and assessed by enzyme-linked immunosorbent assay (ELISA). HUVEC proliferation was determined by ATP luminescence, whereas VEGF secretion was quantified by ELISA. Co-cultured cells were characterized by immunostaining for insulin and CD31. Results: D11 SC and RC showed enhanced insulin secretion in response to 16.7 mmol/l and G+T (p <0.01); without significant alteration by the TZD. Co-culture with HUVEC in SC and RC also increased D11 insulin secretion when challenged with 16.7 mmol/l and G+T (p <0.01), and this was slightly enhanced by the TZD. The presence of HUVEC increased D11 SC and RC insulin secretion in response to high glucose and G+T, respectively (p <0.01). Addition of the TZD increased SC and RC HUVEC ATP content (p <0.01) and VEGF production (p <0.01) in the presence and absence of D11 cells. Conclusions: Rotational co-culture of insulin secreting cells with endothelial cells, and exposure to a PPAR-? agonist may improve the prospects for graft revascularization and function after implantation. © 2011 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The proteinase-activated receptor 2 (PAR-2) expression is increased in endothelial cells derived from women with preeclampsia, characterized by widespread maternal endothelial damage, which occurs as a consequence of elevated soluble vascular endothelial growth factor receptor-1 (sVEGFR-1; commonly known as sFlt-1) in the maternal circulation. Because PAR-2 is upregulated by proinflammatory cytokines and activated by blood coagulation serine proteinases, we investigated whether activation of PAR-2 contributed to sVEGFR-1 release. PAR-2–activating peptides (SLIGRL-NH2 and 2-furoyl-LIGRLO-NH2) and factor Xa increased the expression and release of sVEGFR-1 from human umbilical vein endothelial cells. Enzyme-specific, dominant-negative mutants and small interfering RNA were used to demonstrate that PAR-2–mediated sVEGFR-1 release depended on protein kinase C-ß1 and protein kinase C-e, which required intracellular transactivation of epidermal growth factor receptor 1, leading to mitogen-activated protein kinase activation. Overexpression of heme oxygenase 1 and its gaseous product, carbon monoxide, decreased PAR-2–stimulated sVEGFR-1 release from human umbilical vein endothelial cells. Simvastatin, which upregulates heme oxygenase 1, also suppressed PAR-2–mediated sVEGFR-1 release. These results show that endothelial PAR-2 activation leading to increased sVEGFR-1 release may contribute to the maternal vascular dysfunction observed in preeclampsia and highlights the PAR-2 pathway as a potential therapeutic target for the treatment of preeclampsia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bisphenol A (BPA) is capable of mimicking endogenous hormones with potential consequences for human health and BPA exposure has been associated with several human diseases including neuropsychiatric disorders. Here, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) results show that BPA at low concentrations (10 ng/mL and 1 μg/mL) induces differential transcript levels of four biomarker genes for Major Depressive Disorder (MDD) in HT29 human colon adenocarcinona cell line and Human Umbilical Vein Endothelial Cells (HUVEC). These results substantiate increasing concerns of BPA exposure in levels currently detected in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Familial amyloidotic polyneuropathy (FAP) has a high prevalence in Portugal, and the most common form of hereditary amyloidosis is caused by an amyloidogenic variant of transthyretin (TTR) with a substitution of methionine for valine at position 30 (V30M). Until now, the available efficient therapy is liver transplantation, when performed in an early phase of the onset of the disease symptoms. However, transplanted FAP patients have a significantly higher incidence of early hepatic artery thrombosis compared with non-FAP transplanted patients. Because FAP was described as an independent risk factor for early hepatic artery thrombosis, more studies to understand the underlying mechanisms involved in this outcome are of the utmost importance. Knowing that the liver is the major site for TTR production, we investigated the biological effects of TTR proteins in the vasculature and on angiogenesis. In this study, we identified genes differentially expressed in endothelial cells exposed to the WT or V30M tetramer. We found that endothelial cells may acquire different molecular identities when exposed to these proteins, and consequently TTR could regulate angiogenesis. Moreover, we show that V30M decreases endothelial survival by inducing apoptosis, and it inhibits migration. These findings provide new knowledge that may have critical implications in the prevention of early hepatic artery thrombosis in FAP patients after liver transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aspirin [acetylsalicylic acid (ASA)], along with its analgesic-antipyretic uses, is now also being considered for cardiovascular protection and treatments in cancer and human immunodeficiency virus infection. Although many of ASA's pharmacological actions are related to its ability to inhibit prostaglandin and thromboxane biosynthesis, some of its beneficial therapeutic effects are not completely understood. Here, ASA triggered transcellular biosynthesis of a previously unrecognized class of eicosanoids during coincubations of human umbilical vein endothelial cells (HUVEC) and neutrophils [polymorphonuclear leukocytes (PMN)]. These eicosanoids were generated with ASA but not by indomethacin, salicylate, or dexamethasone. Formation was enhanced by cytokines (interleukin 1 beta) that induced the appearance of prostaglandin G/H synthase 2 (PGHS-2) but not 15-lipoxygenase, which initiates their biosynthesis from arachidonic acid in HUVEC. Costimulation of HUVEC/PMN by either thrombin plus the chemotactic peptide fMet-Leu-Phe or phorbol 12-myristate 13-acetate or ionophore A23187 leads to the production of these eicosanoids from endogenous sources. Four of these eicosanoids were also produced when PMN were exposed to 15R-HETE [(15R)-15-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid] and an agonist. Physical methods showed that the class consists of four tetraene-containing products from arachidonic acid that proved to be 15R-epimers of lipoxins. Two of these compounds (III and IV) were potent inhibitors of leukotriene B4-mediated PMN adhesion to HUVEC, with compound IV [(5S,6R,15R)-5,6,15-trihydroxy-7,9,13-trans-11-cis-eicosatetraenoi c acid; 15-epilipoxin A4] active in the nanomolar range. These results demonstrate that ASA evokes a unique class of eicosanoids formed by acetylated PGHS-2 and 5-lipoxygenase interactions, which may contribute to the therapeutic impact of this drug. Moreover, they provide an example of a drug's ability to pirate endogenous biosynthetic mechanisms to trigger new mediators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To determine whether non-enterobacterial endotoxins, which are likely to constitute the majority of the circulating endotoxin pool, may stimulate coronary artery endothelial cell activation. Interleukin-8 secretion, monocyte adhesion, and E-selectin expression were measured in human umbilical vein endothelial cells (HUVECs) and coronary artery endothelial cells (HCAECs) challenged in vitro with highly purified endotoxins of common host colonisers Escherichia coli, Porphyromonas gingivalis, Pseudomonas aeruginosa, and Bacteroides fragilis. HCAECs but not HUVECs expressed Toll-like receptor (TLR)-2 and were responsive to non-enterobacterial endotoxins. Transfection of TLR-deficient HEK-293 cells with TLR2 or TLR4/MD2 revealed that while E. coli endotoxin utilised solely TLR4 to signal, the endotoxins, deglycosylated endotoxins (lipid-A), and whole heat-killed bacteria of the other species stimulated TLR2-but not TLR4-dependent cell-signalling. Blockade of TLR2 with neutralizing antibody prevented HCAEC activation by non-enterobacterial endotoxins. Comparison of each endotoxin with E. coli endotoxin in limulus amoebocyte lysate assay revealed that the non-enterobacterial endotoxins are greatly underestimated by this assay, which has been used in all previous studies to estimate plasma endotoxin concentrations. Circulating non-enterobacterial endotoxins may be an underestimated contributor to endothelial activation and atherosclerosis in individuals at risk of increased plasma endotoxin burden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angiogenesis, or neovascularization, is a finely balanced process controlled by pro- and anti-angiogenic factors. Vascular endothelial growth factor (VEGF) is a major pro-angiogenic factor, whereas pigment epithelial-derived factor (PEDF) is the most potent natural angiogenesis inhibitor. In this study, the regulatory role of bone marrow stromal cells (BMSCs) during angiogenesis was assessed by the endothelial differentiation potential, VEGF/PEDF production and responses to pro-angiogenic and hypoxic conditions. The in vivo regulation of blood vessel formation by BMSCs was also explored in a SCID mouse model. Results showed that PEDF was expressed more prominently in BMSCs compared to VEGF. This contrasted with human umbilical vein endothelial cells (HUVECs) where the expression of VEGF was higher than that of PEDF. The ratio of VEGF/PEDF gene expression in BMSCs increased when VEGF concentration reached 40 ng/ml in the culture medium, but decreased at 80 ng/ml. Under CoCl2- induced hypoxic conditions, the VEGF/PEDF ratio of BMSCs increased significantly in both normal and angiogenic culture media. There was no expression of endothelial cell markers in BMSCs cultured in either pro-angiogenic or hypoxia culture conditions when compared with HUVECs. The in vivo study showed that VEGF/PEDF expression closely correlated with the degree of neovascularization, and that hypoxia significantly induced pro-angiogenic activity in BMSCs. These results indicate that, rather than being progenitors of endothelial cells, BMSCs play an important role in regulating the neovascularization process, and that the ratio of VEGF and PEDF may, in effect, be an indicator of the pro- or antiangiogenic activities of BMSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human lymphatic vascular malformations (LMs), also known as cystic hygromas or lymphangioma, consist of multiple lymphatic endothelial cell-lined lymph-containing cysts. No animal model of this disease exists. To develop a mouse xenograft model of human LM, CD34NegCD31Pos LM lymphatic endothelial cells (LM-LEC) were isolated from surgical specimens and compared to foreskin CD34NegCD31Pos lymphatic endothelial cells (LECs). Cells were implanted into a mouse tissue engineering model for 1, 2 and 4 weeks. In vitro LM-LECs showed increased proliferation and survival under starvation conditions (P < 0.0005 at 48 h, two-way ANOVA), increased migration (P < 0.001, two-way ANOVA) and formed fewer (P = 0.029, independent samples t test), shorter tubes (P = 0.029, independent samples t test) than foreskin LECs. In vivo LM-LECs implanted into a Matrigel™-containing mouse chamber model assembled to develop vessels with dilated cystic lumens lined with flat endothelium, morphology similar to that of clinical LMs. Human foreskin LECs failed to survive implantation. In LM-LEC implanted chambers the percent volume of podoplaninPos vessels was 1.18 ± 2.24 % at 1 week, 6.34 ± 2.68 % at 2 weeks and increasing to 7.67 ± 3.60 % at 4 weeks. In conclusion, the significantly increased proliferation, migration, resistance to apoptosis and decreased tubulogenesis of LM-LECs observed in vitro is likely to account for their survival and assembly into stable LM-like structures when implanted into a mouse vascularised chamber model. This in vivo xenograft model will provide the basis of future studies of LM biology and testing of potential pharmacological interventions for patients with lymphatic malformations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polymer biomaterials have been widely used for bone replacement/regeneration because of their unique mechanical properties and workability. Their inherent low bioactivity makes them lack osseointegration with host bone tissue. For this reason, bioactive inorganic particles have been always incorporated into the matrix of polymers to improve their bioactivity. However, mixing inorganic particles with polymers always results in inhomogeneity of particle distribution in polymer matrix with limited bioactivity. This study sets out to apply the pulsed laser deposition (PLD) technique to prepare uniform akermanite (Ca2MgSi2O7, AKT) glass nanocoatings on the surface of two polymers (non-degradable polysulfone (PSU) and degradable polylactic acid (PDLLA)) in order to improve their surface osteogenic and angiogenic activity. The results show that a uniform nanolayer composed of amorphous AKT particles (∼30nm) of thickness 130nm forms on the surface of both PSU and PDLLA films with the PLD technique. The prepared AKT-PSU and AKT-PDLLA films significantly improved the surface roughness, hydrophilicity, hardness and apatite mineralization, compared with pure PSU and PDLLA, respectively. The prepared AKT nanocoatings distinctively enhance the alkaline phosphate (ALP) activity and bone-related gene expression (ALP, OCN, OPN and Col I) of bone-forming cells on both PSU and PDLLA films. Furthermore, AKT nanocoatings on two polymers improve the attachment, proliferation, VEGF secretion and expression of proangiogenic factors and their receptors of human umbilical vein endothelial cells (HUVEC). The results suggest that PLD-prepared bioceramic nanocoatings are very useful for enhancing the physicochemical, osteogenic and angiogenic properties of both degradable and non-degradable polymers for application in bone replacement/regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Productive infection of human amniotic and endothelial cell lines with Japanese encephalitis virus (JEV) was established leading to the induction of NF kappa B and HLA-F, a non-classical MHC molecule. Induction of the HLA-F gene and protein in JEV-infected cells was shown to be NF kappa B dependent since it was blocked by inhibitors of NF kappa B activation. ShRNA targeting lentivirus-mediated stable knockdown of the p65 subunit of NF kappa B inhibited JEV-mediated induction of HLA-F both in the amniotic cell line, AV-3 as well as the human brain microendothelial cell line, HBMEC. The induction of HLA-F by treatment of AV-3 with TNF-alpha was also inhibited by ShRNA mediated knockdown of NF kappa B. TNF-alpha treatment of HEK293T cells that were transfected with reporter plasmids under the control of HLA-F enhancer A elements resulted in significant transactivation of the luciferase reporter gene. NF kappa B-mediated induction of HLA-F following JEV infection and TNF-alpha exposure is being suggested for the first time. (C) 2014 Elsevier Inc. All rights reserved.