910 resultados para Human Plasma
Resumo:
Background: Vitamin B2 exists in blood as riboflavin and its cofactors, flavin mononucleotide (FMN) and FAD. The erythrocyte glutathione reductase activation coefficient (EGRAC) has traditionally been used to assess vitamin B2 status in humans. We investigated the relationships of EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD in elderly volunteers and their responses to riboflavin administration. Methods: EGRAC and plasma and erythrocyte concentrations of riboflavin, FMN, and FAD were determined in 124 healthy individuals with a mean age of 69 years. The same measurements were made in a subgroup of 46 individuals with EGRAC 1.20 who participated in a randomized double-blind 12-week intervention study and received riboflavin (1.6 mg/day; n = 23) or placebo (n = 23). Results: Median plasma concentrations were 10.5 nmol/L for riboflavin, 6.6 nmol/L for FMN, and 74 nmol/L for FAD. In erythrocytes, there were only trace amounts of riboflavin, whereas median FMN and FAD concentrations were 44 and 469 nmol/L, respectively. Erythrocyte FMN and FAD correlated with each other and with EGRAC and plasma riboflavin (P
Resumo:
3-Deoxyglucosone (3-DG) is a reactive dicarbonyl sugar thought to be a key intermediate in the nonenzymatic polymerization and browning of proteins by glucose. 3-DG may be formed in vivo from fructose, fructose 3-phosphate, or Amadori adducts to protein, such as N epsilon-fructoselysine (FL), all of which are known to be elevated in body fluids or tissues in diabetes. Modification of proteins by 3-DG formed in vivo is thought to be limited by enzymatic reduction of 3-DG to less reactive species, such as 3-deoxyfructose (3-DF). In this study, we have measured 3-DF, as a metabolic fingerprint of 3-DG, in plasma and urine from a group of diabetic patients and control subjects. Plasma and urinary 3-DF concentrations were significantly increased in the diabetic compared with the control population (0.853 +/- 0.189 vs. 0.494 +/- 0.072 microM, P <0.001, and 69.9 +/- 44.2 vs. 38.7 +/- 16.1 nmol/mg creatinine, P <0.001, respectively). Plasma and urinary 3-DF concentrations correlated strongly with one another, with HbA1c (P <0.005 in all cases), and with urinary FL (P <0.02 and P = 0.005, respectively). The overall increase in 3-DF concentrations in plasma and urine in diabetes and their correlation with other indexes of glycemic control suggest that increased amounts of 3-DG are formed in the body during hyperglycemia in diabetes and then metabolized to 3-DF. These observations are consistent with a role for increased formation of the dicarbonyl sugar 3-DG in the accelerated browning of tissue proteins in diabetes.
Resumo:
Background
The human microbiome plays a significant role in maintaining normal physiology. Changes in its composition have been associated with bowel disease, metabolic disorders and atherosclerosis. Sequences of microbial origin have been observed within small RNA sequencing data obtained from blood samples. The aim of this study was to characterise the microbiome from which these sequences are derived.
Results
Abundant non-human small RNA sequences were identified in plasma and plasma exosomal samples. Assembly of these short sequences into longer contigs was the pivotal novel step in ascertaining their origin by BLAST searches. Most reads mapped to rRNA sequences. The taxonomic profiles of the microbes detected were very consistent between individuals but distinct from microbiomes reported at other sites. The majority of bacterial reads were from the phylum Proteobacteria, whilst for 5 of 6 individuals over 90% of the more abundant fungal reads were from the phylum Ascomycota; of these over 90% were from the order Hypocreales. Many contigs were from plants, presumably of dietary origin. In addition, extremely abundant small RNAs derived from human Y RNAs were detected.
ConclusionsA characteristic profile of a subset of the human microbiome can be obtained by sequencing small RNAs present in the blood. The source and functions of these molecules remain to be determined, but the specific profiles are likely to reflect health status. The potential to provide biomarkers of diet and for the diagnosis and prognosis of human disease is immense.
Resumo:
This study combined high resolution mass spectrometry (HRMS), advanced chemometrics and pathway enrichment analysis to analyse the blood metabolome of patients attending the memory clinic: cases of mild cognitive impairment (MCI; n = 16), cases of MCI who upon subsequent follow-up developed Alzheimer's disease (MCI_AD; n = 19), and healthy age-matched controls (Ctrl; n = 37). Plasma was extracted in acetonitrile and applied to an Acquity UPLC HILIC (1.7μm x 2.1 x 100 mm) column coupled to a Xevo G2 QTof mass spectrometer using a previously optimised method. Data comprising 6751 spectral features were used to build an OPLS-DA statistical model capable of accurately distinguishing Ctrl, MCI and MCI_AD. The model accurately distinguished (R2 = 99.1%; Q2 = 97%) those MCI patients who later went on to develop AD. S-plots were used to shortlist ions of interest which were responsible for explaining the maximum amount of variation between patient groups. Metabolite database searching and pathway enrichment analysis indicated disturbances in 22 biochemical pathways, and excitingly it discovered two interlinked areas of metabolism (polyamine metabolism and L-Arginine metabolism) were differentially disrupted in this well-defined clinical cohort. The optimised untargeted HRMS methods described herein not only demonstrate that it is possible to distinguish these pathologies in human blood but also that MCI patients 'at risk' from AD could be predicted up to 2 years earlier than conventional clinical diagnosis. Blood-based metabolite profiling of plasma from memory clinic patients is a novel and feasible approach in improving MCI and AD diagnosis and, refining clinical trials through better patient stratification.
Resumo:
Captan and folpet are fungicides largely used in agriculture. They have similar chemical structures, except that folpet has an aromatic ring unlike captan. Their half-lives in blood are very short, given that they are readily broken down to tetrahydrophthalimide (THPI) and phthalimide (PI), respectively. Few authors measured these biomarkers in plasma or urine, and analysis was conducted either by gas chromatography coupled to mass spectrometry or liquid chromatography with UV detection. The objective of this study was thus to develop simple, sensitive and specific liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry (LC/APCI-MS/MS) methods to quantify both THPI and PI in human plasma and urine. Briefly, deuterated THPI was added as an internal standard and purification was performed by solid-phase extraction followed by LC/APCI-MS/MS analysis in negative ion mode for both compounds. Validation of the methods was conducted using spiked blank plasma and urine samples at concentrations ranging from 1 to 250 μg/L and 1 to 50 μg/L, respectively, along with samples of volunteers and workers exposed to captan or folpet. The methods showed a good linearity (R (2) > 0.99), recovery (on average 90% for THPI and 75% for PI), intra- and inter-day precision (RSD, <15%) and accuracy (<20%), and stability. The limit of detection was 0.58 μg/L in urine and 1.47 μg/L in plasma for THPI and 1.14 and 2.17 μg/L, respectively, for PI. The described methods proved to be accurate and suitable to determine the toxicokinetics of both metabolites in human plasma and urine.
Resumo:
A rapid, sensitive and specific method for quantifying ciprofibrate in human plasma using bezafibrate as the internal standard (IS) is described. The sample was acidified prior extraction with formic acid (88%). The analyte and the IS were extracted from plasma by liquid-liquid extraction using an organic solvent (diethyl ether/dichloromethane 70/30 (v/v)). The extracts were analyzed by high performance liquid chromatography coupled with electrospray tandem mass spectrometry (HPLC-MS/MS). Chromatography was performed using Genesis C18 4 mu m analytical column (4.6 x 150 mm i.d.) and a mobile phase consisting of acetonitrile/water (70/30, v/v) and 1 mM acetic acid. The method had a chromatographic run time of 3.4 min and a linear calibration curve over the range 0.1-60 mu g/mL (r > 0.99). The limit of quantification was 0.1 mu g/mL. The intra- and interday accuracy and precision values of the assay were less than 13.5%. The stability tests indicated no significant degradation. The recovery of ciprofibrate was 81.2%, 73.3% and 76.2% for the 0.3, 5.0 and 48.0 ng/mL standard concentrations, respectively. For ciprofibrate, the optimized parameters of the declustering potential, collision energy and collision exit potential were -51 V, -16 eV and -5 V, respectively. The method was also validated without the use of the internal standard. This HPLC-MS/MS procedure was used to assess the bioequivalence of two ciprofibrate 100 mg tablet formulations in healthy volunteers of both sexes. The following pharmacokinetic parameters were obtained from the ciprofibrate plasma concentration vs. time curves: AUC(last), AUC(0-168 h), C(max) and T(max). The geometric mean with corresponding 90% confidence interval (CI) for test/reference percent ratios were 93.80% (90% CI = 88.16-99.79%) for C(max), 98.31% (90% CI = 94.91-101.83%) for AUC(last) and 97.67% (90% CI = 94.45-101.01%) for AUC(0-168 h). Since the 90% Cl for AUC(last), AUC(0-168 h) and C(max) ratios were within the 80-125% interval proposed by the US FDA, it was concluded that ciprofibrate (Lipless (R) 100 mg tablet) formulation manufactured by Biolab Sanus Farmaceutica Ltda. is bioequivalent to the Oroxadin (R) (100 mg tablet) formulation for both the rate and the extent of absorption. (C) 2011 Published by Elsevier B.V.
Resumo:
A column switching LC method is presented for the analysis of fluoxetine (FLU) and norfluoxetine (NFLU) by direct injection of human plasma using a lab-made restricted access media (RAM) column. A RAM-BSA-octadecyl silica (C-18) column (40 min x 4.6 mm, 10 mu m) is evaluated in both backflush and foreflush elution modes and coupled with a C-18 lab-made (50 mm x 4.6 mm, 3 pm) analytical column in order to perform online sample preparation. Direct injection of 100 mu L, of plasma samples is possible with the developed approach. In addition, reduction of sample handling is obtained when compared with traditional liquid-liquid extraction (LLE) and SPE. The total analysis time is around 20 min. A LOQ of 15 ng/mL is achieved in a concentration range of 15-500 ng/mL, allowing the therapeutic drug monitoring of clinical samples. The precision values achieved are lower than 15% for all the evaluated points with adequate recovery and accuracy. Furthermore, no matrix interferences are found in the analysis and the proposed method shows to be an adequate alternative for analysis of FLU in plasma.
Resumo:
In the present study we evaluated the precision of the ELISA method to quantify caffeine in human plasma and compared the results with those obtained by gas chromatography. A total of 58 samples were analyzed by gas chromatography using a nitrogen-phosphorus detector and routine techniques. For the ELISA test, the samples were diluted to obtain a concentration corresponding to 50% of the absorbance of the standard curve. To determine whether the proximity between the I50 of the standard curve and that of the sample would bring about a more precise result, the samples were divided into three blocks according to the criterion of difference, in modulus, of the I50 of the standard curve and of the I50 of the sample. The samples were classified into three groups. The first was composed of 20 samples with I50 up to 1.5 ng/ml, the second consisted of 21 samples with I50 ranging from 1.51 to 3 ng/ml, and the third of 17 samples with I50 ranging from 3.01 to 13 ng/ml. The determination coefficient (R² = 0.999) showed that the data obtained by gas chromatography represented a reliable basis. The results obtained by ELISA were also reliable, with an estimated Pearson correlation coefficient of 0.82 between the two methods. This coefficient for the different groups (0.88, 0.79 and 0.49 for groups 1, 2 and 3, respectively) showed greater reliability for the test with dilutions closer to I50.
Resumo:
An enantioselective high-performance liquid chromatographic method for the analysis of carvedilol in plasma and urine was developed and validated using (-)-menthyl chloroformate (MCF) as a derivatizing reagent. Chloroform was used for extraction, and analysis was performed by HPLC on a C18 column with a fluorescence detector. The quantitation limit was 0.25 ng/ml for S(-)-carvedilol in plasma and 0.5 ng/ml for R(+)-carvedilol in plasma and for both enantiomers in urine. The method was applied to the study of enantioselectivity in the pharmacokinetics of carvedilol administered in a multiple dose regimen (25mg/12h) to a hypertensive elderly female patient. The data obtained demonstrated highest plasma levels for the R(+)-carvedilol(AUCSS 75.64 vs 37.29ng/ml). The enantiomeric ratio R(+)/S(-) was 2.03 for plasma and 1.49 0 - 12 for urine (Aeo-12 17.4 vs 11.7 pg). Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Rocuronium (ROC) is a neuromuscular blocking agent used in surgical procedures which is eliminated primarily by biliary excretion. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed and validated for analysis of ROC in human plasma. Separation of ROC and IS (verapamil) was performed using an endcapped C-18 column and a mixture of water:acetonitrile:trifluoracetic acid (50:50:0.1, v/v) as mobile phase. Aliquots of 100 mu L of human plasma were extracted at pH 3, using dichloromethane. The lower limit of quantification of 5 ng/mL shows the high sensitivity of this method. Intra- and inter-assay precision (as relative standard deviation) was all <= 14.2% and accuracy (as relative standard error) did not exceed 10.1%. The validated method was successfully applied to quantify ROC concentrations in patients under surgical procedures up to 6 h after the administration of the 0.4-0.9 mg/kg ROC. The pharmacokinetic parameter estimations of ROC showed AUC/dose of 563 mu g min/mL, total clearance of 2.5 mL/min/kg, volume of distribution at steady state of 190 mL/kg and mean residence time of 83 min. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
An analytical method based on liquid chromatography with positive ion electrospray ionization (ESI) coupled to tandem mass spectrometry detection was developed for the determination of pantoprazole (CAS 102625-70-7) in human plasma using lansoprazole (CAS 103577-45-3) as the internal standard. The analyte and internal standard were extracted from the plasma samples by liquid/liquid extraction using diethyl-ether/dichloromethane (70:30; v/v) and chromatographed on a C-8 analytical column. The mobile phase consisted of acetonitrile/water/methanol (57:25:18; v/v/v) + 10 mmol/l acetic acid + 20 mmol/l ammonium acetate. The method has a chromatographic total run time of 4.5 min and was linear within the range 5.0-5,000 ng/mL. Detection was performed on a triple quadrupole tandem mass spectrometer by Multiple Reaction Monitoring (MRM). The intra- and inter-run precisions calculated from quality control (QC) samples were 4.2% and 3.2%, respectively. The accuracies as determined from QC samples were -5.0% (intra-run) and 2.0% (inter-run). The method herein described was employed in a bioequivalence study of two tablet formulations of pantoprazole.