911 resultados para Host-virus interaction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Apple latent infection caused by Neofabraea alba: host-pathogen interaction and disease management Bull’s eye rot (BER) caused by Neofabraea alba is one of the most frequent and damaging latent infection occurring in stored pome fruits worldwide. Fruit infection occurs in the orchard, but disease symptoms appear only 3 months after harvest, during refrigerated storage. In Italy BER is particularly serious for late harvest apple cultivar as ‘Pink Lady™’. The purposes of this thesis were: i) Evaluate the influence of ‘Pink Lady™’ apple primary metabolites in N. alba quiescence ii) Evaluate the influence of pH in five different apple cultivars on BER susceptibility iii) To find out not chemical method to control N. alba infection iv) Identify some fungal volatile compounds in order to use them as N. alba infections markers. Results regarding the role of primary metabolites showed that chlorogenic, quinic and malic acid inhibit N. alba development. The study based on the evaluation of cultivar susceptibility, showed that Granny Smith was the most resistant apple cultivar among the varieties analyzed. Moreover, Granny Smith showed the lowest pH value from harvest until the end of storage, supporting the thesis that ambient pH could be involved in the interaction between N. alba and apple. In order to find out new technologies able to improve lenticel rot management, the application of a non-destructive device for the determination of chlorophyll content was applied. Results showed that fruit with higher chlorophyll content are less susceptible to BER, and molecular analyses comforted this result. Fruits with higher chlorophyll content showed up-regulation of PGIP and HCT, genes involved in plant defence. Through the application of PTR-MS and SPME GC-MS, 25 volatile organic compounds emitted by N. alba were identified. Among them, 16 molecules were identified as potential biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydiae are obligate intracellular bacteria with a strong global prevalence. They cause infections of the eye, lung and the genital tract and can either replicate in inclusion compartments or persist inside their host cell. In this thesis we focused on two aspects of chlamydiae infection. We hypothesize that transcription factor AP-1 is crucial for a replicative chlamydiae infection in epithelial cells. In addition we suggest that chlamydiae hide inside apoptotic blebs for a silent uptake by macrophages as immune evasion strategy.rnFocusing on AP-1, we could demonstrate that during Chlamydia pneumoniae infection, protein expression and phosphorylation of the AP-1 family member c-Jun significantly increased in a time and dose dependent manner. A siRNA knockdown of c-Jun in HEp-2 cells reduced chlamydial load, resulting in smaller inclusions and a significant lower chlamydial recovery. Furthermore, inhibition of the c-Jun containing AP-1 complexes, using Tanshinone IIA, changed the replicative infection into a persistent phenotype, characterized by (i) smaller, aberrant inclusions, (ii) a strong decrease in chlamydial load, as well as by (iii) its reversibility after removal of Tanshinone IIA. As chlamydiae are energy parasites, we investigated whether Tanshinone IIA interferes with energy/metabolism related processes. rnA role for autophagy or gene expression of glut-1 and c-jun in persistence could not be determined. However we could demonstrate Tanshinone IIA treatment to be accompanied by a significant decrease of ATP levels, probably causing a chlamydiae persistent phenotype.rnRegarding the chlamydial interaction with human primary cells we characterized infection of different chlamydiae species in either pro-inflammatory (type I) or anti-inflammatory (type II) human monocyte derived macrophages (hMDM). We found both phenotypes to be susceptible to chlamydiae infection. Furthermore, we observed that upon Chlamydia trachomatis and GFP-expressing Chlamydia trachomatis infection more hMDM type II were infected. However the chlamydial load was higher in hMDM type I and correspondingly, more replicative-like inclusions were found in this phenotype. Next, we focused on the chlamydial transfer using a combination of high speed live cell imaging and GFP-expressing Chlamydia trachomatis for optimal visualization. Thereby, we could successfully visualize the formation of apoptotic, chlamydiae-containing blebs and the interaction of hMDM with these blebs. Moreover, we observed the development of a replicative infection in hMDM. rnIn conclusion, we demonstrated a crucial role of AP-1 for C. pneumoniae development and preliminary time lapse data suggest that chlamydiae can be transferred to hMDMs via apoptotic blebs. In all, these data may contribute to a better understanding of chlamydial infection processes in humans.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular immune responses are an important correlate of hepatitis C virus (HCV) infection outcome. These responses are governed by the host's human leukocyte antigen (HLA) type, and HLA-restricted viral escape mutants are a critical aspect of this host-virus interaction. We examined the driving forces of HCV evolution by characterizing the in vivo selective pressure(s) exerted on single amino acid residues within nonstructural protein 3 (NS3) by the HLA types present in two host populations. Associations between polymorphisms within NS3 and HLA class I alleles were assessed in 118 individuals from Western Australia and Switzerland with chronic hepatitis C infection, of whom 82 (69%) were coinfected with human immunodeficiency virus. The levels and locations of amino acid polymorphisms exhibited within NS3 were remarkably similar between the two cohorts and revealed regions under functional constraint and selective pressures. We identified specific HCV mutations within and flanking published epitopes with the correct HLA restriction and predicted escaped amino acid. Additional HLA-restricted mutations were identified that mark putative epitopes targeted by cell-mediated immune responses. This analysis of host-virus interaction reveals evidence of HCV adaptation to HLA class I-restricted immune pressure and identifies in vivo targets of cellular immune responses at the population level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neospora caninum is an apicomplexan parasite that is capable of infecting, a wide range of tissues. The fact that Neospora represents an important abortion-causing parasite in cattle has transformed neosporosis research from an earlier, rather esoteric field, to a significant research topic, and considerable investments have been made in the last years to develop an efficacious vaccine or other means of intervention that would prevent infection and abortion due to N. caninum infection in cattle. Antigenic molecules associated with proteins involved in adhesion/invasion or other parasite-host-cell interaction processes can confer protection against Neospora caninum infection, and such proteins represent valuable targets for the development of a vaccine to limit economical losses due to neosporosis. Although not ideal, small laboratory animal models that mimic cerebral infection, acute disease and fetal loss upon infection during pregnancy have been used for the assessment of vaccine candidates, in parallel with studies on experimental infections in cattle. Herein, we review and critically assess these vaccination approaches and discuss potential options for improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The Grooved Carpet shell clam Ruditapes decussatus is the autochthonous European clam and the most appreciated from a gastronomic and economic point of view. The production is in decline due to several factors such as Perkinsiosis and habitat invasion and competition by the introduced exotic species, the manila clam Ruditapes philippinarum. After we sequenced R. decussatus transcriptome we have designed an oligo microarray capable of contributing to provide some clues on molecular response of the clam to Perkinsiosis. Results A database consisting of 41,119 unique transcripts was constructed, of which 12,479 (30.3%) were annotated by similarity. An oligo-DNA microarray platform was then designed and applied to profile gene expression in R. decussatus heavily infected by Perkinsus olseni. Functional annotation of differentially expressed genes between those two conditionswas performed by gene set enrichment analysis. As expected, microarrays unveil genes related with stress/infectious agents such as hydrolases, proteases and others. The extensive role of innate immune system was also analyzed and effect of parasitosis upon expression of important molecules such as lectins reviewed. Conclusions This study represents a first attempt to characterize Ruditapes decussatus transcriptome, an important marine resource for the European aquaculture. The trancriptome sequencing and consequent annotation will increase the available tools and resources for this specie, introducing the possibility of high throughput experiments such as microarrays analysis. In this specific case microarray approach was used to unveil some important aspects of host-parasite interaction between the Carpet shell clam and Perkinsus, two non-model species, highlighting some genes associated with this interaction. Ample information was obtained to identify biological processes significantly enriched among differentially expressed genes in Perkinsus infected versus non-infected gills. An overview on the genes related with the immune system on R. decussatus transcriptome is also reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Host-parasite interactions between crustaceans and six fish species (Psectrogaster falcata, Ageneiosus ucayalensis, Acestrorhynchus falcirostris, Hemiodus unimaculatus, Serrasalmus gibbus and Geophagus proximus) from a reservoir in eastern Amazon, northern Brazil, were investigated. Eight hundred and seventy-eight parasites belonging to three crustacean species, Excorallana berbicensis, Argulus chicomendesi and Ergasilus turucuyus, which parasitized the hosts? mouth, gills and tegument, were collected from 295 fish and examined. High infestation levels were caused by E. berbicensis on the body surface of the hosts. Excorallana berbicensis showed aggregate dispersion, except in S. gibbus, while E. turucuyus showed random dispersion in A. falcirostris. The host?s sex did not influence infestation by E. berbicensis, and high parasitism failed to affect the body conditions of the fish. In the case of some hosts, rainfall rates, temperature, dissolved oxygen levels and water pH affected the prevalence and abundance of E. berbicensis, the dominant parasite species. Results revealed that the environment and life-style of the hosts were determining factors in infestations by parasites. Current assay is the first report on E. berbicensis for the six hosts, as well as on A. chicomendesi for G. proximus and P. falcata.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The better understanding of mechanisms at the basis of host-pathogen interaction can represent a valid tool to increase productivity and contain economic losses in animal production through the maintenance of intestinal homeostasis. With this project, three preliminary in vitro studies were conducted with the aim of investigating how bioactive compounds could influence mechanisms of host-pathogen interaction in poultry and swine. Different panels of nature identical compounds, medium chain fatty acids, and plant extracts were employed against strains of Salmonella Typhimurium, Brachyspira hyodysenteriae, and Salmonella Enteritidis, respectively. When bacterial field strains were tested, the comparison between natural compounds and antibiotics was examined, with the aim of evaluating the role of the substances in the antibiotic-resistance context. Results demonstrate that bioactive compounds have positive effects on the host, the pathogen, or both in different experimental conditions. Additionally, when compared to antibiotics, bioactive compounds have proven to be valid alternatives to address the phenomenon of antibiotic resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The constitutive production of AMPs in shrimps ensures that animals are able to protect themselves from low-level assaults by pathogens present in the environment. As these molecules play important roles in the shrimp immune defense system, the expression level of these AMPs are possible indicators of the immune state of shrimps. The present study also indicates the antiviral property of AMPs, especially ALF, stressing the importance of their up-regulation through the application of immunostimulants/probiotics as a prophylactic strategy in aquaculture. The present study shows that shrimp defense system is equipped enough to evade WSSV infection to a certain extent, when the animals were maintained on marine yeast and probiotic diet, whereas the control diet fed group succumbed to WSSV infection. This study reveals that marine yeast and probiotic supplemented diet can delay the process of WSSV infection and confer greater protection to the animals. Particularly, the protection conferred by marine yeast, C. haemulonii S27 and Bacillus MCCB101 were highly promising imparting greater hope to the aquaculture community to overcome the prevailing disease problems in aquaculture. It may be inferred from the present study that up-regulation of AMP genes could be effected by the application of immunostimulants and probiotics. Also, AMP expression profile could be used as an effective tool for screening immunostimulants and probiotics for application in shrimp culture. Ultimately, it is likely that no single compound or strategy will provide a solution to the problem of disease within aquaculture and that, in reality, a suite of techniques will be required including the manipulation of the rearing environment, addition of probionts as a matter of routine during culture, and the use of immunostimulants and other supplements during vulnerable growth phases. Finally, the development of good management practices, the control of environmental variables, genetic improvement in the penaeid species, understanding of host-virus interaction, modulation of the shrimp immune system, supported by functional genomics and proteomics of this crustacean, as a whole suggests that the control of WSSV is not far.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meningoencephalitis by Herpesvirus type 5 (BoHV-5) in cattle has some features that are similar to those of herpetic encephalitis in humans and other animal species. Human Herpesvirus 3 (commonly known as Varicella-zoster virus 1), herpes simplex viruses (HSV), and equid Herpesvirus 1 (EHV-1) induce an intense inflammatory, vascular and cellular response. In spite of the many reports describing the histological lesions associated with natural and experimental infections, the immunopathological mechanisms for the development of neurological disorder have not been established. A total of twenty calf brains were selected from the Veterinary School, University of São Paulo State, Araçatuba, Brazil, after confirmation of BoHV-5 infection by virus isolation as well as by a molecular approach. The first part of the study characterized the microscopic lesions associated with the brain areas in the central nervous system (CNS) that tested positive in a viral US9 gene hybridization assay. The frontal cortex (Fc), parietal cortex (Pc), thalamus (T) and mesencephalon (M) were studied. Secondly, distinct pathogenesis mechanisms that take place in acute cases were investigated by an immunohistochemistry assay. This study found the frontal cortex to be the main region where intense oxidative stress phenomena (AOP-1) and synaptic protein expression (SNAP-25) were closely related to inflammatory cuffs, satellitosis and gliosis, which represent the most frequently observed neurological lesions. Moreover, MMP-9 expression was shown to be localized in the leptomeninges, in the parenchyma and around mononuclear infiltrates (p < 0.0001). These data open a new perspective in understanding the role of the AOP-1, MMP-9 and SNAP-25 proteins in mediating BoHV-5 pathogenesis and the strategies of host-virus interaction in order to invade the CNS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trichomonas vaginalis and Tritrichomonas foetus are parasitic, flagellated protists that inhabit the urogenital tract of humans and bovines, respectively. T. vaginalis causes the most prevalent non-viral sexually transmitted disease worldwide and has been associated with an increased risk for human immunodeficiency virus-1 infection in humans. Infections by T. foetus cause significant losses to the beef industry worldwide due to infertility and spontaneous abortion in cows. Several studies have shown a close association between trichomonads and the epithelium of the urogenital tract. However, little is known concerning the interaction of trichomonads with cells from deeper tissues, such as fibroblasts and muscle cells. Published parasite-host cell interaction studies have reported contradictory results regarding the ability of T. foetus and T. vaginalis to interact with and damage cells of different tissues. In this study, parasite-host cell interactions were examined by culturing primary human fibroblasts obtained from abdominal biopsies performed during plastic surgeries with trichomonads. In addition, mouse 3T3 fibroblasts, primary chick embryo myogenic cells and L6 muscle cells were also used as models of target cells. The parasite-host cell cultures were processed for scanning and transmission electron microscopy and were tested for cell viability and cell death. JC-1 staining, which measures mitochondrial membrane potential, was used to determine whether the parasites induced target cell damage. Terminal deoxynucleotidyltransferase-mediated dUTP nick end labelling staining was used as an indicator of chromatin damage. The colorimetric crystal violet assay was performed to ana-lyse the cytotoxicity induced by the parasite. The results showed that T. foetus and T. vaginalis adhered to and were cytotoxic to both fibroblasts and muscle cells, indicating that trichomonas infection of the connective and muscle tissues is likely to occur; such infections could cause serious risks to the infected host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le virus du syndrome reproducteur et respiratoire porcin (VSRRP) est un pathogène d’importance dans l’industrie porcine et est responsable d’importantes pertes économiques. Il n’existe pas d’antiviral efficace contre celui-ci. Il a récemment été mis en évidence que le surnageant de culture d’Actinobacillus pleuropneumoniae, l’agent étiologique de la pleuropneumonie porcine, possédait une activité antivirale in vitro contre le VSRRP dans la lignée cellulaire SJPL. Les objectifs de mon projet sont (i) d’étudier les mécanismes cellulaires menant à l’activité antivirale causée par le surnageant de culture d’A. pleuropneumoniae, et (ii) de caractériser les molécules actives présentes dans le surnageant de culture d’A. pleuropneumoniae. Dans un premier temps, des analyses de protéome ont été effectuées et ont permis d’observer que le surnageant de culture modulait la régulation du cycle cellulaire. Dans le but d’analyser le cycle cellulaire des cellules SJPL, la cytométrie en flux a été utilisée et a permis de démontrer que le surnageant de culture induisait un arrêt du cycle cellulaire en phase G2/M. Deux inhibiteurs de la phase G2/M ont alors été utilisé. Il s'est avéré que ces inhibiteurs avaient la capacité d’inhiber le VSRRP dans les cellules SJPL. Enfin, la spectrométrie de masse a été utilisée dans le but de caractériser les molécules actives présentes dans le surnageant de culture d’A. pleuropneumoniae et d’identifier deux molécules. Ce projet a permis de démontrer pour la première fois qu’A. pleuropneumoniae est capable de perturber le cycle cellulaire et que ce dernier était un élément important dans l’effet antiviral contre le VSRRP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado em Genética Molecular