995 resultados para Homologous expression


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, five homologous feeder cell lines were developed for the culture and maintenance of rhesus monkey embryonic stem cells (rESCs). Monkey ear skin fibroblasts (MESFs), monkey oviductal fibroblasts (MOFs), monkey follicular granulosa fibroblast-like (MFG) cells, monkey follicular granulosa epithelium-like (MFGE) cells, and clonally derived fibroblasts from MESF (CMESFs) were established and compared with the ability of mouse embryonic fibroblasts (MEFs) to support rESC growth. MESF, MOF, MFG, and CMESF cells, but not MFGE cells, were as good as or better than MEFs in supporting undifferentiated growth while maintaining the differentiation potential of the rESCs. In an effort to understand the unique properties of supportive feeder cells, expression levels for a number of candidate genes were examined. MOF, MESF, and MEF cells highly expressed leukemia inhibitory factor, ciliary neurotrophic factor, basic fibroblast growth factor, stem cell factor, transforming growth factor PI, bone morphogenetic protein 4, and WNT3A, whereas WNT2, WNT4, and WNT5A were downregulated, compared with MFGE cells. Additionally, all monkey feeder cell lines expressed Dkk1 and LRP6, antagonists of the WNT signaling pathway, but not WNT1, WNT8B, or Dkk2. rESCs grown on homologous feeders maintained normal karyotypes, displayed the characteristics of ESCs, including morphology, alkaline phosphatase, Oct4, the cell surface markers stage-specific embryonic antigen (SSEA)-3, SSEA-4, tumor-related antigen (TRA)-1-60, and TRA-1-81, and formed cystic embryoid bodies in vitro that included differentiated cells representing the three major germ layers. These results indicate that the four homologous feeder cell lines can be used to support the undifferentiated growth and maintenance of pluripotency in rESCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

我们以前的研究建立了五株猕猴饲养层细胞系来支持猕猴胚胎干细胞(rESCs)的生长:一岁猴耳皮肤成纤维细胞(MESFs)、两岁猴输卵管成纤维细胞(MOFs)、成年猴卵泡颗粒成纤维样细胞(MFGs)、成年猴卵泡颗粒上皮样细胞(MFGEs),以及MESFs的克隆成纤维细胞(CMESFs).我们发现MESFs、CMESFs、MOFs和MFGs,而不足MFGEs支持猕猴胚胎干细胞(rESCs,rhesus embryonic stem cells)的生长.通过半定量PCR的方法,我们在支持性的饲养层细胞中检测到了一些基因的高表达.在本研究中,我们运用Affymetrix公司的GeneChip Rhesus Macaque Genome Array芯片来研究这五株同源饲养层的表达谱,希望发现哪些细胞因子和信号通路在维持rESCs中起到重要作用.结果表明,除MFGE外,包括GREM2、bFGF,、KITLG,、DKK3、GREM1、AREG、SERPINF1和LTBF1等八个基因的mRNA在支持性的饲养层细胞中高表达.本研究结果提示,很多信号通路在支持rESCs的未分化生长和多潜能性方面可能起到了冗余的作用.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In plants and less-advanced animal species, such as C.elegans, introduction of exogenous double-stranded RNA (dsRNA) into cells would trigger degradation of the mRNA with homologous sequence and interfere with the endogenous gene expression. It might represent an ancient anti-virus response which could prevent the mutation in the genome that was caused by virus infection or mobile DNA elements insertion. This phenomenon was named RNA interference, or RNAi. In this study, RNAi was used to investigate the function of basonuclin gene during oogenesis. Microinjection of dsRNA directed towards basonuclin into mouse germinal-vesicle-intact (GV) oocytes brought down the abundance of the cognate mRNA effectively in a time- and concentration-dependent manner. This reduction effect was sequence-specific and showed no negative effect on other non-homologous gene expression in oocytes, which indicated that dsRNA can recognize and cause the degradation of the transcriptional products of endogenous basonuclin gene in a sequence-specific manner. Immunofluorescence results showed that RNAi could reduce the concentration of basonuclin protein to some extent, but the effect was less efficient than the dsRNA targeting towards tPA and cMos which was also expressed in oocytes. This result might be due to the long half life of basonuclin protein in oocytes and the short reaction time which was posed by the limited life span of GV oocytes cultured in vitro. In summary, dsRNA could inhibit the expression of the cognate gene in oocytes at both mRNA and protein levels. The effect was similar to Knock-out technique which was based on homologous recombination. Furthermore, hairpin-style dsRNA targeting basonuclin gene could be produced by transcription from a recombinant plasmid and worked efficiently to deplete the cognate mRNA in oocytes. This finding offered a new way to study the function of basonuclin in the early stage of oogenesis by infection of primordial oocytes with the plasmid expressing hairpin-style basonuclin dsRNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptor 3 (TLR3) plays a key role in activating immune responses during viral infection. To study the genes involved in the regulatory function of TLR3 in the rare minnow Gobiocypris rarus after viral infection, a full-length cDNA of TLR3 (GrTLR3) with a splice variant (GrTLR3s) was identified by homologous cloning and RACE techniques. The antiviral effector molecule Mx gene was cloned and partially sequenced. The mRNA expression levels of GrTLR3, GrTLR3s, and Mx were studied in different tissues before and after virus infection by real-time quantitative RT-PCR. The transcripts of all three genes in liver were significantly increased following GCRV infection (P<0.05). The mRNA levels in liver were upregulated at 24 h post-injection for GrTLR3 and GrTLR3s, and at 12 h for Mx. The upregulated expression levels were several folds for GrTLR3s, tens of folds for GrTLR3, and hundreds of folds for Mx. By semi-quantitative RT-PCR, GrTLR3 and Mx expressed at all the developmental stages, whereas GrTLR3s could only be detected at later developmental stages. Using RNAi and transgenic techniques, GrTLR3 mediated Mx expression but GrTLR3s did not. The time-dependent upregulation of receptor and effector, and the Mx over-expression dependent on TLR3, indicated that GrTLR3 regulated Mx expression in viral infection through a configuration change in rare minnow, and its splice variant did not contribute to the process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sonic hedgehog (Shh), one of important homologous members of the hedgehog (Hh) family in vertebrates, encodes a signaling molecule that is involved in short- or long-range patterning processes during embryogenesis. In zebrafish, maternal activity of Hh was found to be contributing to the formation of primary motoneurons. However, we found that all of the known Hh members were not maternally expressed in zebrafish. In the present study, full-length cDNA of common carp (Cyprinus carpio) Shh (cShh) was gained by degenerate reverse-transcription PCR (RT-PCR) and rapid amplification of cDNA ends. Sequence comparison shows that cShh coding sequence shares 93.4% identity with zebrafish Shh coding sequence, and their corresponding protein sequences have 91.9% similarity. Comparative analysis of Shh genomic sequences and Hh protein sequences from different species revealed that the genomic structures of Hh are conserved from invertebrate to vertebrate. In contrast to zebrafish Shh, cShh transcripts were detectable from one-cell stage by RT-PCR analysis. Whole mount in situ hybridization verified the maternal expression of Shh in common carp, which is, to our knowledge, the first report of that in vertebrates, suggesting that Shh might be responsible for the maternal Hh activity in common carp.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heme-regulated initiation factor 2 alpha kinase (HRI) is acknowledged to play an important role in translational shutoff in reticulocytes in response to various cellular stresses. In this study, we report its homologous cDNA cloning and characterization from cultured flounder embryonic cells (FEC) after treatment with UV-inactivated grass carp haemorrhagic virus (GCHV). The full-length cDNA of Paralichthys olivaceus HRI homologue (PoHRI) has 2391 bp and encodes a protein of 651 amino acids. The putative PoHRI protein exhibits high identity with all members of eIF2 alpha kinase family. It contains 12 catalytic subdomains located within the C-terminus of all Ser/Thr protein kinases, a unique kinase insertion of 136 amino acids between subdomains IV and V, and a relatively conserved N-terminal domain (NTD). Upon heat shock, virus infection or Poly PC treatment, PoHRI mRNA and protein are significantly upregulated in FEC cells but show different expression patterns in response to different stresses. In healthy flounders, PoHRI displays a wide tissue distribution at both the mRNA and protein levels. These results indicate that PoHRI is a ubiquitous eIF2a kinase and might play an important role in translational control over nonheme producing FEC cells under different stresses. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of zebrafish by modifying endogenous growth hormone (GH) gene through homologous recombination is described here. We first constructed the targeting vectors pGHT1.7k and pGHT2.8k, which were used for the knockout/knockin of the endogenous GH gene of zebrafish, and injected these two vectors into the embryos of zebrafish. Overall, the rate of targeted integration with the characteristic of germ line transmission in zebrafish was 1.7x10(-6). In one experimental patch, the integrating efficiency of pGHT2.8k was higher than that of pGHT1.7k, but the lethal effect of pGHT2.8k was stronger than that of pGHT1.7k. The clones with the correct integration of target genes were identified by a simple screening procedure based on green fluorescent protein (GFP) and RFP dual selection, which corresponded to homologous recombination and random insertion, respectively. The potential homologous recombination zebrafish was further bred to produce a heterozygous F-1 generation, selected based on the presence of GFP. The potential targeted integration of exogenous GH genes into a zebrafish genome at the P-0 generation was further verified by polymerase chain reaction and Southern blot analysis. Approximately 2.5% of potential founder knockout and knockin zebrafish had the characteristic of germ line transmission. In this study, we developed an efficient method for producing the targeted gene modification in zebrafish for future studies on genetic modifications and gene functions using this model organism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systemic study was initiated to identify stage-specific expression genes in fish embryogenesis by using suppression subtractive hybridization (SSH) technique. In this study, we presented a preliminary result on screen for stage-specific expression genes between tail bud stage (TBS) and heartbeat beginning stage (HBS) in gynogenetic silver crucian carp (Carassius auratus gibelio). Two SSH plasmid libraries specific for TBS embryos and HBS embryos were constructed, and stage-specific expression genes were screened between the two stages. 1963 TBS positive clones and 2466 HBS positive clones were sampled to PCR amplification, and 1373 TBS and 1809 HBS PCR positive clones were selected to carry out dot blots. 169 TBS dot blot positive clones and 272 HBS dot blot positive clones were sequenced. Searching GenBank by using these nucleotide sequences indicated that most of the TBS dot blot positive clones could not be found homologous sequences in the database, while known genes were mainly detected from HBS dot blot positive clones. Of the 79 known genes, 20 were enzymes or kinases involved in important metabolism of embryonic development. Moreover, specific expressions of partial genes were further confirmed by virtual northern blots. This study is the first step for making a large attempt to study temporal and spatial control of gene expression in the gynogenetic fish embryogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: The model eukaryote, Tetrahymena thermophila, is the first ciliated protozoan whose genome has been sequenced, enabling genome-wide analysis of gene expression. Methodology/Principal Findings: A genome-wide microarray platform containing the predicted coding sequences (putative genes) for T. thermophila is described, validated and used to study gene expression during the three major stages of the organism's life cycle: growth, starvation and conjugation. Conclusions/Significance: Of the,27,000 predicted open reading frames, transcripts homologous to only,5900 are not detectable in any of these life cycle stages, indicating that this single-celled organism does indeed contain a large number of functional genes. Transcripts from over 5000 predicted genes are expressed at levels >5x corrected background and 95 genes are expressed at >250x corrected background in all stages. Transcripts homologous to 91 predicted genes are specifically expressed and 155 more are highly up-regulated in growing cells, while 90 are specifically expressed and 616 are up-regulated during starvation. Strikingly, transcripts homologous to 1068 predicted genes are specifically expressed and 1753 are significantly up-regulated during conjugation. The patterns of gene expression during conjugation correlate well with the developmental stages of meiosis, nuclear differentiation and DNA elimination. The relationship between gene expression and chromosome fragmentation is analyzed. Genes encoding proteins known to interact or to function in complexes show similar expression patterns, indicating that co-ordinate expression with putative genes of known function can identify genes with related functions. New candidate genes associated with the RNAi-like process of DNA elimination and with meiosis are identified and the late stages of conjugation are shown to be characterized by specific expression of an unexpectedly large and diverse number of genes not involved in nuclear functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The endostyle of invertebrate chordates is a pharyngeal organ that is thought to be homologous with the follicular thyroid of vertebrates. Although thyroid-like features such as iodine-concentrating and peroxidase activities are located in the dorsolateral part of both ascidian and amphioxus endostyles, the structural organization and numbers of functional units are different. To estimate phylogenetic relationships of each functional zone with special reference to the evolution of the thyroid, we have investigated, in ascidian and amphioxus, the expression patterns of thyroid-related transcription factors such as TTF-2/MoxE4 and Pax2/5/8, as well as the forkhead transcription factors FoxQ1 and FoxA. Comparative gene expression analyses depicted an overall similarity between ascidians and amphioxus endostyles, while differences in expression patterns of these genes might be specifically related to the addition or elimination of a pair of glandular zones. Expressions of Ci-FoxE and BbFoxE4 suggest that the ancestral FoxE class might have been recruited for the formation of thyroid-like region in a possible common ancestor of chordates. Furthermore, coexpression of FoxE4, Pax2/5/8, and TPO in the dorsolateral part of both ascidian and amphioxus endostyles suggests that genetic basis of the thyroid function was already in place before the vertebrate lineage. (c) 2005 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The psychrotrophic Antarctic alga, Chlorella vulgaris NJ-7, grows under an extreme environment of low temperature and high salinity. In an effort to better understand the correlation between fatty acid metabolism and acclimation to Antarctic environment, we analyzed its fatty acid compositions. An extremely high amount of Delta(12) unsaturated fatty acids was identified which prompted us to speculate about the involvement of Delta(12) fatty acid desaturase in the process of acclimation. A full-length cDNA sequence, designated CvFAD2, was isolated from C. vulgaris NJ-7 via reverse transcription polymerase chain reaction (RT-PCR) and RACE methods. Sequence alignment and phylogenetic analysis showed that the gene was homologous to known microsomal Delta(12)-FADs with the conserved histidine motifs. Heterologous expression in yeast was used to confirm the regioselectivity and the function of CvFAD2. Linoleic acid (18:2), normally not present in wild-type yeast cells, was detected in transformants of CvFAD2. The induction of CvFAD2 at an mRNA level under cold stress and high salinity is detected by real-time PCR. The results showed that both temperature and salinity motivated the upregulation of CvFAD2 expression. The accumulation of CvFAD2 increased 2.2-fold at 15A degrees C and 3.9-fold at 4A degrees C compared to the alga at 25A degrees C. Meanwhile a 1.7- and 8.5-fold increase at 3 and 6% NaCl was detected. These data suggest that CvFAD2 is the enzyme responsible for the Delta(12) fatty acids desaturation involved in the adaption to cold and high salinity for Antarctic C. vugaris NJ-7.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The translationally controlled tumor protein (TCTP) is highly conserved and has been widely found in eukaryotic organisms. Here, we report the phylogenetic analysis and developmental expression of AmphiTCTP, a TCTP homologous gene in cephalochordate amphioxus. Phylogenetic analysis indicates that the putative protein of AmphiTCTP is close to its vertebrate orthologs. The mRNA of AmphiTCTP is found in fertilized eggs, early cleavage embryo and most of the early developmental stages by in situ hybridization and RT-PCR, but its expression is not detectable from late cleavage stage to mid-gastrula. The expression of AmphiTCTP in zygotes and early cleavage stages shows that AmphiTCTP may be a maternal gene. From the early neurula stage onward, AmphiTCTP transcript is localized in the presumptive notochord, presomitic mesoderm, and nascent somites. However, its expression is gradually down-regulated after the notochord and somites have been formed. The expression pattern of AmphiTCTP thus coincides with the differentiation of the notochord and somites, this suggests that AmphiTCTP may not be a housekeeping gene and may play an important role in mesoderm development. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptors (TLRs) are an ancient family of pattern recognition receptors, which show homology with the Drosophila Toll protein and play key roles in detecting various non-self substances and then initiating and activating immune system. In this report, the full length of the first bivalve TLR (named as CfToll-1) is presented. CfToll-1 was originally identified as an EST (expressed sequence tag) fragment from a cDNA library of Zhikong scallop (Chlamys farreri). Its complete sequence was obtained by the construction of Genome Walker library and 5' RACE (rapid amplification of cDNA end) techniques. The full length cDNA of CfToll-1 consisted of 4308 nucleotides with a polyA tail, encoding a putative protein of 1198 amino acids with a 5' UTR (untranslated region) of 211 bp and a 3'UTR of 500 bp. The predicted amino acid sequence comprised an extracellular domain with a potential signal peptide, nineteen leucine-rich repeats (LRR), two LRR-C-terminal (LRRCT) motifs, and a LRR-N-terminal (LRRNT), followed by a transmembrane segment of 20 amino acids, and a cytoplasmic region of 138 amino acids containing the Toll/IL-1R domain (TIR). The deduced amino acid sequence of CfToll-1 was homologous to Drosophila melanogaster Tolls (DmTolls) with 23-35% similarity in the full length amino acids sequence and 30-54% in the TIR domain. Phylogenetic analysis of CfToll-1 with other known TLRs revealed that CfToll-1 was closely related to DmTolls. An analysis of the tissue-specific expression of the CfToll-1 gene by Real-time PCR showed that the transcripts were constitutively expressed in tissues of haemocyte, muscle, mantle, heart, gonad and gill. The temporal expressions of CfToll-1 in the mixed primary cultured haemocytes were observed after the haemocytes were treated with 1 mu g ml(-1) and 100 ng ml(-1) lipopolysaccharide (LPS), respectively. The expression of CfToll-1 was up-regulated and increased about 2-fold at 6 h with the treatment of 1 mu g ml(-1) LPS. The expression of CfToll-1 was down-regulated with the treatment of 100 ng ml(-1) LPS. The results indicated that the expression of CfToll-1 could be regulated by LPS, and this regulation was dose-dependent. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Myogenin is a bHLH transcription factor of the MyoD family. It plays a crucial role in myoblast differentiation and maturation. We report here the isolation of flounder myogenin gene and the characterization of its expression patterns. Sequence analysis indicated that flounder myogenin shared a similar structure and the conserved bHLH domain with other vertebrate myogenin genes. Flounder myogenin gene contains 3 exons and 2 introns. Sequence alignment and phylogenetic showed that flounder myogenin was more homologous with halibut (Hippoglossus hippoglossus) myogenin and striped bass (Morone saxatilis) myogenin. Whole-mount embryo in situ hybridization revealed that flounder myogenin was first detected in the medial region of somites that give rise to slow muscles, and expanded later to the lateral region of the somite that become fast muscles. The levels of myogenin transcripts dropped significantly in matured somites at the trunk region. Its expression could only be detected in the caudal somites, which was consistent with the timing of somite maturation. Transient expression analysis showed that the 546 bp flounder myogenin promoter was sufficient to direct muscle-specific GFP expression in zebrafish embryos. (c) 2007 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Specification and differentiation of skeletal muscle cells are driven by the activity of genes encoding members of the myogenic regulatory factors (MRFs). In vertebrates, the MRF family includes MyoD, Myf5, myogenin, and MRF4. The MRFs are capable of converting a variety of nonmuscle cells into myoblasts and myotubes. To better understand their roles in fish muscle development, we isolated the MyoD gene from flounder (Paralichthys olivaceus) and analyzed its structure and patterns of expression. Sequence analysis showed that flounder MyoD shared a structure similar to that of vertebrate MRFs with three exons and two introns, and its protein contained a highly conserved basic helix-loop-helix domain (bHLH). Comparison of sequences revealed that flounder MyoD was highly conserved with other fish MyoD genes. Sequence alignment and phylogenetic analysis indicated that flounder MyoD, seabream (Sparus aurata) MyoD1, takifugu (Takifugu rubripes) MyoD, and tilapia (Oreochromis aureus) MyoD were more likely to be homologous genes. Flounder MyoD expression was first detected as two rows of presomitic cells in the segmental plate. From somitogenesis, MyoD transcripts were present in the adaxial cells that give rise to slow muscles and the lateral somitic cells that give rise to fast muscles. After 30 somites formed, MyoD expression decreased in the somites except the caudal somites, coincident with somite maturation. In the hatching stage, MyoD was expressed in other muscle cells and caudal somites. It was detected only in muscle in the growing fish.