34 resultados para Holothurian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution of the holothurian H. KH.) scabra indicated its availability all along coastal areas on Palk Bay from Rameswavam to Mallipattinam and along the Gulf of Hannah coast from Pamban to Ervadi and Tuticmhin,'at 4~2O m depth.The major fishing for holmthurians was done by skin diving at all the centres. The tallu valai was operated at Tuticorin and Vedalai and trawlevs were operated at Rameswaram.The fmod of H. KN.) scabra consists of ovganic matter which contains mud, sand, shell debris, bivalves and algae. Obsehvatinns indicated the species seems to be a n0n—se1ective feeder. The assimilation efficiency from sediment to faeces indicated that the faecal pellets of H. KH.) scabra are semidigested.A multiple relationship was fitted between total length, total weight, gutted weight, gonad weight and maturity stages were found significant.The fishing season for holothurians commences from October to March along Gulf of Manner coast and from March to October along Palk Bay coast.The percentage of catches recorded by skin diving, trawlere and tallu valai were 80.04%, 10.27% and 9.69% respectively. Skin diving contributes to maximum catch.The holothurians landed all along the Gulf of Manner and Palk Bay coasts constitute 25.6% and 74.4% respectively. This showed that Palk Bay coast is more productive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summer bloom-derived phytodetritus settles rapidly to the seafloor on the West Antarctic Peninsula (WAP) continental shelf, where it appears to degrade relatively slowly, forming a sediment ""food bank"" for benthic detritivores. We used stable carbon and nitrogen isotopes to examine sources and sinks of particulate organic material (POM) reaching the WAP shelf benthos (550-625 m depths), and to explore trophic linkages among the most abundant benthic megafauna. We measured delta(13)C and delta(15)N values in major megafaunal taxa (n = 26) and potential food sources, including suspended and sinking POM, ice algae, sediment organic carbon, phytodetritus, and macrofaunal polychaetes. The range in delta(13)C values (> 14 parts per thousand) of suspended POM was considerably broader than in sedimentary POC, where little temporal variability in stable isotope signatures was observed. While benthic megafauna also exhibited a broad range of VC values, organic carbon entering the benthic food web appeared to be derived primarily from phytoplankton production, with little input from ice algae. One group of organisms, primarily deposit-feeders, appeared to rely on fresh phytodetritus recovered from the sediments, and sediment organic material that had been reworked by sediment microbes. A second group of animals, including many mobile invertebrate and fish predators, appeared to utilize epibenthic or pelagic food resources such as zooplankton. One surface-deposit-feeding holothurian (Protelpidia murrayi) exhibited seasonal variability in stable isotope values of body tissue, while other surface- and subsurface-deposit-feeders showed no evidence of seasonal variability in food source or trophic position. Detritus from phytoplankton blooms appears to be the primary source of organic material for the detritivorous benthos; however, seasonal variability in the supply of this material is not mirrored in the sediments, and only to a minor degree in the benthic fauna. This pattern suggests substantial inertia in benthic-pelagic coupling, whereby the sediment ecosystem integrates long-term variability in production processes in the water column above. Published by Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ocean acidification (OA) caused by excessive CO2 is a potential ecological threat to marine organisms. The impacts of OA on echinoderms are well-documented, but there has been a strong bias towards sea urchins, and limited information is available on sea cucumbers. This work examined the effect of medium-term (60 days) exposure to three pH levels (pH 8.06, 7.72, and 7.41, covering present and future pH variability) on the bioenergetic responses of the sea cucumber, Apostichopus japonicus, an ecologically and economically important holothurian in Asian coasts. Results showed that the measured specific growth rate linearly decreased with decreased pH, leading to a 0.42 %/day decrease at pH 7.41 compared with that at pH 8.06. The impacts of pH on physiological energetics were variable: measured energy consumption and defecation rates linearly decreased with decreased pH, whereas maintenance energy in calculated respiration and excretion were not significantly affected. No shift in energy allocation pattern was observed in A. japonicus upon exposure to pH 7.72 compared with pH 8.06. However, a significant shift in energy budget occurred upon exposure to pH 7.41, leading to decreased energy intake and increased percentage of energy that was lost in feces, thereby resulting in a significantly lowered allocation into somatic growth. These findings indicate that adult A. japonicus is resilient to the OA scenario at the end of the twenty-first century, but further acidification may negatively influence the grazing capability and growth, thereby influencing its ecological functioning as an "ecosystem engineer" and potentially harming its culture output.