984 resultados para Holocentric chromosomes
Resumo:
The use of banding techniques allows the recognition of chromosomal pairs and karyotypical arrangements. However, its application in Heteroptera holocentric chromosomes is limited. Thus, little is known about their structure, specially their Nucleolar Organizer Regions (NORs). A comparative analysis of the nucleolar characteristics present during spermatogenesis in Triatoma platensis, Triatoma protacta and Triatoma tibiamaculata seems to indicate that in this group of insects nucleolar fragmentation occurs after prophase I. The study of chromosomal structure of these triatomines indicates that NORs are located at some telomeric and interstitial autosome regions and at sexual chromosomes (X/X1X2).
Resumo:
Triatomines are of great concern in public health because they are vectors of Chagas' disease. This study presents an analysis of the species Triatoma melanosoma. The cytogenetic characteristics of triatomines include holocentric chromosomes, post-reductional meiosis in the sex chromosomes and nucleolar fragmentation in the meiotic cycle. The methodology utilized consisted of the techniques of lacto-acetic orcein staining and silver ion impregnation. The organs analyzed were adult testicles. The results enabled to classify the chromosomes by number and size, being three large, eight medium and one small heterochromosome. The three largest chromosomes and the heterochromosomes showed heteropyknotic chromatin in meiosis. The heterochromosomes in 8.05% of the cells in metaphase I behaved as pseudobivalents, contrasting with 91.95% of the cells with individualized sex chromosomes, confirming the achiasmatic nature of these chromosomes. However, the pseudobivalents occurred prominently in metaphase II (78.38%), this fact probably is related to the post-reductional nature of the sex chromosomes. The nucleolus in T. melanosoma persisted until the diplotene phase after which it began to fragment. Nucleolar corpuscles were observed in metaphases I and II and during anaphases I and II, these characteristics being related to the phenomenon of nucleolar persistence. In the initial spermatids, peripheral silver ion impregnation occurred, which could be analogous to the pre-nucleolar corpuscles observed after fragmentation. Thus, this study extends our knowledge of the characteristics of triatomines, in particular, heteropyknotic degree, kinetic activity, formation of sex chromosome achiasmatic pseudobivalency, confirmation of the fragmentation phenomenon, and post-meiotic nucleolar reactivation. ©FUNPEC-RP.
Resumo:
We examined the course of spermatogenesis and the meiotic chromosome complements in aquatic species of true bugs, Heteroptera. The chromosome complement of the Veliidae species was 2n = 39 (38A + X0) and 23 (22A + X0) in Rhagovelia whitei and Rhagovelia sp, respectively, and in the species of the Notonectidae (Martarega sp) it was 26 (22A + 2m + XY); all collected from the region of São José do Rio Preto, SP, Brazil. An impressive characteristic of the first analysis was the size of the cells belonging to Martarega sp, which were six times larger than the same cells in Pentatomidae and twice as large as the cells in aquatic Heteroptera (Gerridae). Regarding spermatogenesis, all the species analyzed showed the same pattern: holocentric chromosomes and elongated spermatids with the chromatin distributed evenly along the head. The family Veliidae showed several bodies impregnated with silver nitrate at prophase, while the family Notonectidae displayed only one. The cells of Notonectidae also showed an evident and round body until the end of prophase I and in the family Veliidae the silver-impregnated bodies were disorganized, where the only region visualized was possibly that of the NOR. In metaphase, silver-stained regions were found at the periphery of all chromosomes in Veliidae and at the periphery of some chromosomes in Notonectidae. The spermatids of Veliidae showed a less silver-impregnated vesicle, while Notonectidae showed silver staining only in part of the nuclear membrane. Therefore, families of Heteroptera have some differences and features that can help identify and classify these species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)