993 resultados para History of Science and of Mathematics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis research was a qualitative case study of a single class of Interdisciplinary Studies: Introduction to Engineering taught in a secondary school. The study endeavoured to explore students' experiences in and perceptions of the course, and to investigate the viability of engineering as an interdisciplinary theme at the secondary school level. Data were collected in the form of student questionnaires, the researcher's observations and reflections, and artefacts representative of students' work. Data analysis was performed by coding textual data and classifying text segments into common themes. The themes that emerged from the data were aligned with facets of interdisciplinary study, including making connections, project-based learning, and student engagement and affective outcomes. The findings of the study showed that students were positive about their experiences in the course, and enjoyed its project-driven nature. Content from mathematics, physics, and technological design was easily integrated under the umbrella of engineering. Students felt that the opportunity to develop problem solving and teamwork skills were two of the most important aspects of the course and could be relevant not only for engineering, but for other disciplines or their day-to-day lives after secondary school. The study concluded that engineering education in secondary school can be a worthwhile experience for a variety of students and not just those intending postsecondary study in engineering. This has implications for the inclusion of engineering in the secondary school curriculum and can inform the practice of curriculum planners at the school, school board, and provincial levels. Suggested directions for further research include classroom-based action research in the areas of technological education, engineering education in secondary school, and interdisciplinary education.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the number of students pursuing mathematics and science in higher education decline, it becomes imperative· that we look for the causes of the decline. As part of the Australian Improving Middle Years Mathematics and Science (IMYMS) project, students were asked to rate their perceptions of classroom practice in mathematics and science and their attitudes to these subjects. Results of this survey reveal little difference in perceptions of classroom practice, but significant differences in students' attitudes between mathematics and science. Differences were particularly evident for items relating to the usefulness of mathematics and science (mathematics was more useful) and enjoyment of the subjects (science is more fun). If teachers are aware of such perspectives, it may be possible to change students' attitudes.

Effective student engagement depends on students enjoying their studies in mathematics and science, being confident in their ability and recognising the relevance of these subjects to everyday life, now and in the future.
(Education Training Committee, 2006, p. xvii)

Science and technology are the widely acknowledged foundation of Australia's future development. Underpinning these are the key learning areas of mathematics and science. However, Australia is experiencing a decline in numbers of mathematics and science students in higher education. Moreover, studies over the last two decades have shown a general decline in Australian students' interest and enjoyment of science across the compulsory secondary school years, with a particularly sharp decline across the primary to secondary school transition (e.g. Adams, Doig, & Rosier 1991; Goodrum, Hackling, & Rennie, 200 I) and a decline in the numbers of students studying' advanced mathematical courses in upper secondary school (Thomas, 2000).

Improving teaching and learning in the middle years of schooling (Years 5 to 9) is receiving particular attention because of the coincidence of the disengagement of students with the significance of these years for the preparation of students for their future role in society. Thus the Improving Middle Years Mathematics and Science: The role of subject cultures in school and teacher change (IMYMS) project, which is the source of data for this paper, is investigating the role of mathematics and science' knowledge and subject cultures in mediating change processes in the middle years of schooling.

Mathematics and science are sometimes seen as "love-hate" subjects, rating highest for subjects disliked, but also rating relatively highly among preferred subjects (Hendley & Stables, 1996). Students, even primary aged students, can often shed light on what constitutes good practice (see, for example, 'van den Heuvel-Panhuizen, 2005). Students' attitudes towards mathematics and science and their perceptions of what they regard as positive aspects of classroom practice have been shown to decline from the primary years to junior secondary (Race, 2000). The decline in interest in science in the early years of secondary school is of particular concern, since it is in these years that attitudes to the pursuit of science subjects and careers are formed (Speering & Rennie, 1996). Students' negative attitude towards the relevance of science ,content for their lives was a strong theme in the report by Goodrum, Hackling, & Rennie (2001) on the status and quality of teaching and learning of science.

As part of the IMYMS project, the IMYMS Student Survey was administered to all students in 2004 and 2005. The survey included a 36 item section on students' perceptions of classroom practice and attitudes towards mathematics and science, and a 24 item section on students' learning preferences. Students completed separate, parallel surveys for mathematics and science.

This paper focuses on students' perceptions and attitudes. It explores the differences in 700 Year 5 and 6 students' perceptions of their learning environment and their attitudes to mathematics and science during 2005, the second (and final) year of schools , involvement in the IMYMS project.