979 resultados para Histidine-rich protein
Resumo:
The present study was carried out to evaluate the Malar-CheckTM Pf test, an immunochromatographic assay that detects Plasmodium falciparum Histidine Rich Protein II, does not require equipment, and is easy and rapid to perform. In dilution assays performed to test sensitivity against known parasite density, Malar-CheckTMwere compared with thick blood smear (TBS), the gold standard for diagnosis. Palo Alto isolate or P. falciparum blood from patients with different parasitemias was used. The average cut-off points for each technique in three independent experiments were 12 and 71 parasites/mm³ (TBS and Malar-CheckTM, respectively). In the field assays, samples were collected from patients with fever who visited endemic regions. Compared to TBS, Malar-CheckTMyielded true-positive results in 38 patients, false-positive results in 3, true-negative results in 23, and false-negative result in 1. Malar-CheckTMperformed with samples from falciparum-infected patients after treatment showed persistence of antigen up to 30 days. Malar-CheckTM should aid the diagnosis of P. falciparum in remote areas and improve routine diagnosis even when microscopy is available. Previous P. falciparum infection, which can determine a false-positive test in cured individuals, should be considered. The prompt results obtained with the Malar-CheckTM for early diagnosis could avoid disease evolution to severe cases.
Resumo:
Dissertação para obtenção do Grau de Mestre em Biotecnologia
Resumo:
Sendo a malária uma doença infecciosa que põe em risco uma elevada percentagem da população mundial, a presente dissertação apresenta o desenvolvimento de um teste de diagnóstico rápido (RDT) para a detecção da infecção. Para a detecção dos antigénios de Plasmodium falciparum (Pf), parasita da malária, foram estudadas nanopartículas de ouro (AuNPs) com dois diâmetros médios diferentes, 17nm e 48nm, funcionalizadas e conjugadas com anticorpos específicos, formando os bionanoconjugados. Este trabalho abrange dois focos de investigação, interligados, de forma a atingir-se o objectivo prosposto: i) Caracterização físico-quimica das AuNPs e dos bionanoconjugados em solução, usando a espectrocopia de UV-Visível, variando a força iónica e o pH do meio. A compreensão do comportamento e estabilidade das partículas consoante o seu diâmetro e revestimento tem em vista o melhoramento do RDT, tanto em sensibilidade como em custo; ii) Desenvolvimento do RDT usando um método que envolve uma ligação competitiva entre o antigénio e o anticorpo específico imobilizado à superfície das AuNPs. Os antigénios correspondem a biomarcadores da presença de Pf: Heat Shock Protein 70 (PfHsp70) e Histidine Rich Protein II (PfHRPII). Como superfícies para o desenvolvimento do RDT foram usados a nitrocelulose e o papel de filtro. Quanto maior é o diâmetro das AuNPs, maior é a estabilidade apresentada em solução quando aumentada a força iónica. Quando é variado o valor de pH do meio, as partículas adoptam um comportamento dependente do seu revestimento, independente do diâmetro. Os bionanoconjugados formados com AuNPs de ambos os diâmetros revelaram-se muito estáveis em solução, numa gama de forças iónicas de 0 a 0,5M de cloreto de sódio, e de pH de 2 a 7. Uma vez que a proteína Hsp70 é produzida constitutivamente em diversas células humanas, é necessário trabalhar com proteínas específicas da infecção, que nesta dissertação foi a PfHRPII. Foram efectuados testes no suporte de nitrocelulose que provaram o reconhecimento da PfHRPII pelos bionanoconjugados AuNPs-MUA-anti-PfHRPII. Estes ensaios necessitam ainda de algumas optimizações. Ensaios de Western-Blot permitiram a identificação da presença da PfHRPII em culturas infectadas, bem como a confirmação da sua ligação ao anticorpo específico, anti-PfHRPII. Um novo método de revelação é introduzido nesta técnica, efectuado através do uso dos bionanoconjugados. Este método mostrou-se promissor na medida em que é rápido, específico e de baixo custo. O principal contributo do trabalho consistiu no desenvolvimento, com sucesso, de um RDT para diagnóstico de malária, usando o antigénio PfHsp70, tendo como base a detecção colorimétrica com AuNPs de 17nm de diâmetro. Usando uma tira de nitrocelulose foi estabelecido um limite de detecção correspondente a 1600parasitas/μL, valor este considerado válido pela OMS para um correcto diagnóstico de malária. O limite de detecção obtido para as AuNPs de 48nm foi superior, não tendo trazido melhorias para o teste desenvolvido com AuNPs de menor diâmetro.
Resumo:
Introduction: We evaluated the in vitro antimalarial activity of tigecycline as an alternative drug for the treatment of severe malaria. Methods: A chloroquine-sensitive Plasmodium falciparum reference strain, a chloroquine-resistant reference strain, and three clinical isolates were tested for in vitro susceptibility to tigecycline. A histidine-rich protein in vitro assay was used to evaluate antimalarial activity. Results: The geometric-mean 50% effective concentration (EC50%) of tigecycline was 535.5 nM (confidence interval (CI): 344.3-726.8). No significant correlation was found between the EC50% of tigecycline and that of any other tested antimalarial drug. Conclusions: Tigecycline may represent an alternative drug for the treatment of patients with severe malaria.
Resumo:
Drug resistance is one of the principal obstacles blocking worldwide malaria control. In Colombia, malaria remains a major public health concern and drug-resistant parasites have been reported. In vitro drug susceptibility assays are a useful tool for monitoring the emergence and spread of drug-resistant Plasmodium falciparum. The present study was conducted as a proof of concept for an antimalarial drug resistance surveillance network based on in vitro susceptibility testing in Colombia. Sentinel laboratories were set up in three malaria endemic areas. The enzyme linked immunosorbent assay-histidine rich protein 2 and schizont maturation methods were used to assess the susceptibility of fresh P. falciparum isolates to six antimalarial drugs. This study demonstrates that an antimalarial drug resistance surveillance network based on in vitro methods is feasible in the field with the participation of a research institute, local health institutions and universities. It could also serve as a model for a regional surveillance network. Preliminary susceptibility results showed widespread chloroquine resistance, which was consistent with previous reports for the Pacific region. However, high susceptibility to dihydroartemisinin and lumefantrine compounds, currently used for treatment in the country, was also reported. The implementation process identified critical points and opportunities for the improvement of network sustainability strategies.
Resumo:
Parahancornia fasciculata (Poir.) Benoist (Apocynaceae), também conhecida como Parahancornia amapa (Hub.) Ducke, é uma espécie vegetal empregada popularmente no tratamento da malária, infecções no útero, gastrite, anemia, problemas respiratórios, entre outros. Os objetivos do presente trabalho foram realizar o estudo fitoquímico, avaliar a toxicidade oral aguda e a atividade antimalárica in vitro e in vivo de extratos, frações e substância isolada obtidas a partir de cascas do caule de P. fasciculata. Foram realizados dois tipos de extrações com o pó das cascas de P. fasciculata, por maceração / percolação, com etanol 96°GL e diclorometano, esta última tendo sido realizada a com o pó das cascas alcalinizado com hidróxido de amônio, obtendo-se os extratos secos EEPF e EDAPF, respectivamente. Uma terceira extração foi realizada a partir do EEPF por aquecimento sob refluxo, sucessivamente, com Hex:DCM (1:1), AcOEt:DCM (1:1) e AcOEt. EEPF foi, também, submetido a fracionamento por extrações ácido-base resultando nas frações de neutros (EEPFN) e de alcalóides (EEPFA). A prospecção fitoquímica realizada com o EEPF foi desenvolvida por CCD em cromatoplacas de sílica gel tendo sido detectada a presença de triterpenos, esteróides, heterosídeos flavônicos, saponinas, polifenóis, taninos, heterosídeos antracênicos e heterosídeos cardiotônicos. EDAPF foi submetido à cromatografia em coluna de sílica gel. Foram recolhidas 30 frações sendo que as frações Fr1-3, Fr4, Fr5-7 e Fr11 concentraram a maior parte da massa do extrato cromatografado. Da Fr5-7 foi isolada uma mistura de ésteres do lupeol que representam os componentes majoritários do EDAPF. Esta fração passou por um processo de hidrólise alcalina e o produto obtido (Fr5-7Hid) foi analisado por espectrometrias no IV, RMN de 1H e 13C e foi identificado como o triterpeno lupeol. A fração insolúvel em AcOEt obtida a partir do EEPF, por aquecimento sob refluxo, apresentou resultado positivo para o teste de proantocianidinas e foi submetido a doseamento desta classe de metabólitos. Os resultados foram expressos em porcentagem dos teores para a amostra não diluída (10,46±0,3419%), amostra diluída a 1:10 (9,94± 0,1598%) e amostra diluída a 1:100 (10,55± 0,9299%). A avaliação da atividade antiplasmódica in vitro em culturas de cepas W2 de Plasmodium falciparum foi realizada pelo teste da Proteína II Rica em Histidina (HRP-II) tendo sido testados EEPF, EEPFN, EEPFA, Fr1-3, Fr4, Fr5-7(ésteres do lupeol), Fr11 e o Fr5-7Hid (lupeol). Os melhores resultados obtidos foram para EEPF, EEPFA E EEPFN (CI50= ~ 50 μg/mL) sendo considerados moderadamente ativos. As demais amostras apresentaram CI50 > 50 μg/mL e foram consideradas inativas. Realizou-se também a avaliação da atividade antimalárica in vivo em camundongos fêmeas suíços infectados com cepas ANKA de P. berghei com o EEPF e o EEPF-HEX:DCM (1:1) em concentrações de 500, 250 e 125mg/kg de peso. EEPF foi parcialmente ativo, somente no 8° dia, em todas as concentrações. Já EEPF-HEX:DCM (1:1) foi parcialmente ativo na dose de 500mg/kg de peso e nas demais doses foi inativo. O teste de toxicidade oral aguda foi realizado em camundongos fêmeas suíços, pelo método da dose fixa (5.000mg/kg), com EEPF e não apresentou nenhum sinal de toxicidade evidente, o que foi confirmado pela ausência de alterações nos exames anátomohistopatológicos realizados.
Resumo:
The haem detoxification pathway of the malaria parasite Plasmodium falciparum is a potential biochemical target for drug development. Free haem, released after haemoglobin degradation, is polymerized by the parasite to form haemozoin pigment. Plasmodium falciparum histidine-rich protein-2 (Pfhrp-2) has been implicated as the catalytic scaffold for detoxification of haem in the malaria parasite. Previously we have shown that a hexapeptide repeat sequence (Ala-His-His-Ala-Ala-Asp), which appears 33 times in Pfhrp-2, may be the major haem binding site in this protein. The haem binding studies carried out by ourselves indicate that up to 18 equivalents of haem could be bound by this protein with an observed K(d) of 0.94 microM. Absorbance spectroscopy provides evidence that chloroquine is capable of extracting haem bound to Pfhrp-2. This was supported by the K(d) value, of 37 nM, observed for the haem-chloroquine complex. The native PAGE studies reveal that the formation of the haem-Pfhrp-2 complex is disrupted by chloroquine. These results indicate that chloroquine may be acting by inhibiting haem detoxification/binding to Pfhrp-2. Moreover, the higher affinity of chloroquine for haem than Pfhrp-2 suggests a possible mechanism of action for chloroquine; it may remove the haem bound to Pfhrp-2 and form a complex that is toxic to the parasite.
Resumo:
Endoperoxide antimalarials based on the ancient Chinese drug Qinghaosu (artemisinin) are currently our major hope in the fight against drug-resistant malaria. Rational drug design based on artemisinin and its analogues is slow as the mechanism of action of these antimalarials is not clear. Here we report that these drugs, at least in part, exert their effect by interfering with the plasmodial hemoglobin catabolic pathway and inhibition of heme polymerization. In an in vitro experiment we observed inhibition of digestive vacuole proteolytic activity of malarial parasite by artemisinin. These observations were further confirmed by ex vivo experiments showing accumulation of hemoglobin in the parasites treated with artemisinin, suggesting inhibition of hemoglobin degradation. We found artemisinin to be a potent inhibitor of heme polymerization activity mediated by Plasmodium yoelii lysates as well as Plasmodium falciparum histidine-rich protein II. Interaction of artemisinin with the purified malarial hemozoin in vitro resulted in the concentration-dependent breakdown of the malaria pigment. Our results presented here may explain the selective and rapid toxicity of these drugs on mature, hemozoin-containing, stages of malarial parasite. Since artemisinin and its analogues appear to have similar molecular targets as chloroquine despite having different structures, they can potentially bypass the quinoline resistance machinery of the malarial parasite, which causes sublethal accumulation of these drugs in resistant strains.
Resumo:
Acute promyelocytic leukemia (APL) has been ascribed to a chromosomal translocation event which results in a fusion protein comprising the PML protein and retinoic acid receptor alpha. PML is normally a component of a nuclear multiprotein complex which is disrupted in the APL disease state. Here, two newly defined cysteine/histidine-rich protein motifs called the B-box (B1 and B2) from PML have been characterized in terms of their effect on PML nuclear body formation, their dimerization, and their biophysical properties. We have shown that both peptides bind Zn2+, which induces changes in the peptides' structures. We demonstrate that mutants in both B1 and B2 do not form PML nuclear bodies in vivo and have a phenotype that is different from that observed in the APL disease state. Interestingly, these mutations do not affect the ability of wild-type PML to dimerize with mutant proteins in vitro, suggesting that the B1 and B2 domains are involved in an additional interaction central to PML nuclear body formation. This report in conjunction with our previous work demonstrates that the PML RING-Bl/B2 motif plays a fundamental role in formation of a large multiprotein complex, a function that may be common to those unrelated proteins which contain the motif.
Resumo:
Metal-catalyzed oxidation may result in structural damage to proteins and has been implicated in aging and disease, including neurological disorders such as Alzheimer's disease and amyotrophic lateral sclerosis. The selective modification of specific amino acid residues with high metal ion affinity leads to subtle structural changes that are not easy to detect but may have dramatic consequences on physical and functional properties of the oxidized protein molecules. PrP contains a histidine-rich octarepeat domain that binds copper. Because copper-binding histidine residues are particularly prone to metal-catalyzed oxidation, we investigated the effect of this reaction on the recombinant prion protein SHaPrP(29–231). Using Cu2+/ascorbate, we oxidized SHaPrP(29–231) in vitro. Oxidation was demonstrated by liquid chromatography/mass spectrometry, which showed the appearance of protein species of higher mass, including increases in multiples of 16, characteristic of oxygen incorporation. Digestion studies using Lys C indicate that the 29–101 region, which includes the histidine-containing octarepeats, is particularly affected by oxidation. Oxidation was time- and copper concentration-dependent and was evident with copper concentrations as low as 1 μM. Concomitant with oxidation, SHaPrP(29–231) suffered aggregation and precipitation, which was nearly complete after 15 min, when the prion protein was incubated at 37°C with a 6-fold molar excess of Cu2+. These findings indicate that PrP, a copper-binding protein, may be particularly susceptible to metal-catalyzed oxidation and that oxidation triggers an extensive structural transition leading to aggregation.
Resumo:
Using data derived from peptide sequencing of p68/70, a protein doublet induced during optic nerve regeneration in goldfish, we have isolated cDNAs that encode RICH (regeneration-induced CNPase homolog) from a goldfish regenerating retina cDNA library. The predicted RICH protein comprises 411 amino acids, possesses a pI of 4.48, and shows significant homology to the mammalian myelin marker enzyme 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase; EC 3.1.4.37). The mRNA encoding RICH was demonstrated, by both Northern blot analysis and RNase protection assays, to be induced as much as 8-fold in regenerating goldfish retinas at 20 days after nerve crush. Analysis of total RNA samples from various tissues showed a broad distribution of RICH mRNA, with the highest levels observed in gravid ovary. The data obtained strongly suggest that RICH is identical or very similar to p68/70. The molecular cloning of RICH provides the means for a more detailed analysis of its function in nerve regeneration. Additionally, the homology of RICH and CNPase suggests that further investigation may provide additional insight into the role of these proteins in the nervous system.
Resumo:
Recombinant tau protein is widely used to study the biochemical, cellular and pathological aspects of tauopathies, including Alzheimer's disease and frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTPD-17). Pure tau in high yield is a requirement for in vitro evaluation of the protein's physiological and toxic functions. However, the preparation of recombinant tau is complicated by the protein's propensity to aggregate and form truncation products, necessitating the use of multiple, time-consuming purification methods. In this study, we investigated parameters that influence the expression of wild type and FTPD-17 pathogenic tau, in an attempt to identify ways to maximise expression yield. Here, we report on the influence of the choice of host strain, induction temperature, duration of induction, and media supplementation with glucose on tau expression in Escherichia coli. We also describe a straightforward process to purify the expressed tau proteins using immobilised metal affinity chromatography, with favourable yields over previous reports. An advantage of the described method is that it enables high yield production of functional oligomeric and monomeric tau, both of which can be used to study the biochemical, physiological and toxic properties of the protein.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The genus Aotus spp. (owl monkey) is one of the WHO recommended experimental models for Plasmodium falciparum blood stage infection, especially relevant for vaccination studies with asexual blood stage antigens of this parasite. For several immunization trials with purified recombinant merozoite/schizont antigens, the susceptible Aouts kenotypes II, III, IV and VI were immunized with Escherichia coli derived fusion proteins containg partial sequences of the proteins MSAI (merozoite surface antigen I), SERP (serine-strech protein) and HRPII (histidine alanine rich protein II) as well as with a group of recombinant antigens obtained by an antiserum raised against a protective 41 kD protein band. The subcutaneous application (3x) of the antigen preparations was carried out in intact animals followed by splenectomy prior to challange, in order to increase the susceptibility of the experimental hosts to the parasite. A partial sequence of HRPII, the combination of three different fusion proteins of the 41 kD group and mixture of two sequences of SERP in the presence of the modified Al(OH)3 adjuvant conferred significant protection against a challange infection with P. falciparum blood stages (2-5 x 10 (elevado a sexta potência) i. RBC). Monkey immunized with the MS2-fusion protein carrying the N-terminal part of the 195 kD precursor of the major merozoite surface antigens induced only marginal protection showing some correlation between antibody titer and degree of parasitaemia. Based on the protective capacity of these recombinant antigens we have expressed two hybrid proteins (MS2/SERP/HRPII and SERP/MSAI/HRPII) in E. coli containing selected partial sequences of SERP, HRPII and MSAI. Antibodies raised against both hybrid proteins in rabbits and Aotus monkeys recognize the corresponding schizont polypeptides. In two independent immunization trials using 13 animals (age 7 months to 3 years) we could show that immunization of Aotus monkeys with either of the two hybrid proteins administered in an oil-based well tolerated formulation protected the animals frm a severe experimental P. falciparum (strain Palo Alto) infection.
Resumo:
Cell invasion targets specific tissues in physiological placental implantation and pathological metastasis, which raises questions about how this process is controlled. We compare dermis and endometrium capacities to support trophoblast invasion, using matching sets of human primary fibroblasts in a coculture assay with human placental explants. Substituting endometrium, the natural trophoblast target, with dermis dramatically reduces trophoblast interstitial invasion. Our data reveal that endometrium expresses a higher rate of the fibronectin (FN) extra type III domain A+ (EDA+) splicing isoform, which displays stronger matrix incorporation capacity. We demonstrate that the high FN content of the endometrium matrix, and not specifically the EDA domain, supports trophoblast invasion by showing that forced incorporation of plasma FN (EDA-) promotes efficient trophoblast invasion. We further show that the serine/arginine-rich protein serine/arginine-rich splicing factor 1 (SRSF1) is more highly expressed in endometrium and, using RNA interference, that it is involved in the higher EDA exon inclusion rate in endometrium. Our data therefore show a mechanism by which tissues can be distinguished, for their capacity to support invasion, by their different rates of EDA inclusion, linked to their SRSF1 protein levels. In the broader context of cancer pathology, the results suggest that SRSF1 might play a central role not only in the tumor cells, but also in the surrounding stroma.