950 resultados para Hip joint center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the increasing advances in hip joint preservation surgery, accurate diagnosis and assessment of femoral head and acetabular cartilage status is becoming increasingly important. Magnetic resonance imaging (MRI) of the hip does present technical difficulties. The fairly thin cartilage lining necessitates high image resolution and high contrast-to-noise ratio (CNR). With MR arthrography (MRA) using intraarticular injected gadolinium, labral tears and cartilage clefts may be better identified through the contrast medium filling into the clefts. However, the ability of MRA to detect varying grades of cartilage damage is fairly limited and early histological and biochemical changes in the beginning of osteoarthritis (OA) cannot be accurately delineated. Traditional MRI thus lacks the ability to analyze the biological status of cartilage degeneration. The technique of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) is sensitive to the charge density of cartilage contributed by glycosaminoglycans (GAGs), which are lost early in the process of OA. Therefore, the dGEMRIC technique has a potential to detect early cartilage damage that is obviously critical for decision-making regarding time and extent of intervention for joint-preservation. In the last decade, cartilage imaging with dGEMRIC has been established as an accurate and reliable tool for assessment of cartilage status in the knee and hip joint.This review outlines the current status of dGEMRIC for assessment of hip joint cartilage. Practical modifications of the standard technique including three-dimensional (3D) dGEMRIC and dGEMRIC after intra-articular gadolinium instead of iv-dGEMRIC will also be addressed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We developed an object-oriented cross-platform program to perform three-dimensional (3D) analysis of hip joint morphology using two-dimensional (2D) anteroposterior (AP) pelvic radiographs. Landmarks extracted from 2D AP pelvic radiographs and optionally an additional lateral pelvic X-ray were combined with a cone beam projection model to reconstruct 3D hip joints. Since individual pelvic orientation can vary considerably, a method for standardizing pelvic orientation was implemented to determine the absolute tilt/rotation. The evaluation of anatomically morphologic differences was achieved by reconstructing the projected acetabular rim and the measured hip parameters as if obtained in a standardized neutral orientation. The program had been successfully used to interactively objectify acetabular version in hips with femoro-acetabular impingement or developmental dysplasia. Hip(2)Norm is written in object-oriented programming language C++ using cross-platform software Qt (TrollTech, Oslo, Norway) for graphical user interface (GUI) and is transportable to any platform.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: A previous study of radiofrequency neurotomy of the articular branches of the obturator nerve for hip joint pain produced modest results. Based on an anatomical and radiological study, we sought to define a potentially more effective radiofrequency method. DESIGN: Ten cadavers were studied, four of them bilaterally. The obturator nerve and its articular branches were marked by wires. Their radiological relationship to the bone structures on fluoroscopy was imaged and analyzed. A magnetic resonance imaging (MRI) study was undertaken on 20 patients to determine the structures that would be encountered by the radiofrequency electrode during different possible percutaneous approaches. RESULTS: The articular branches of the obturator nerve vary in location over a wide area. The previously described method of denervating the hip joint did not take this variation into account. Moreover, it approached the nerves perpendicularly. Because optimal coagulation requires electrodes to lie parallel to the nerves, a perpendicular approach probably produced only a minimal lesion. In addition, MRI demonstrated that a perpendicular approach is likely to puncture femoral vessels. Vessel puncture can be avoided if an oblique pass is used. Such an approach minimizes the angle between the target nerves and the electrode, and increases the likelihood of the nerve being captured by the lesion made. Multiple lesions need to be made in order to accommodate the variability in location of the articular nerves. CONCLUSIONS: The method that we described has the potential to produce complete and reliable nerve coagulation. Moreover, it minimizes the risk of penetrating the great vessels. The efficacy of this approach should be tested in clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Osteoarthritis is thought to be caused by a combination of intrinsic vulnerabilities of the joint, such as anatomic shape and alignment, and environmental factors, such as body weight, injury, and overuse. It has been postulated that much of osteoarthritis is due to anatomic deformities. Advances in surgical techniques such as the periacetabular osteotomy, safe surgical dislocation of the hip, and hip arthroscopy have provided us with effective and safe tools to correct these anatomical problems. The limiting factor in treatment outcome in many mechanically compromised hips is the degree of cartilage damage which has occurred prior to treatment. In this regard, the role of imaging, utilizing plain radiographs in conjunction with magnetic resonance imaging, is becoming vitally important for the detection of these anatomic deformities and pre-radiographic arthritis. In this article, we will outline the plain radiographic features of hip deformities that can cause instability or impingement. Additionally, we will illustrate the use of MRI imaging to detect subtle anatomic abnormalities, as well as the use of biochemical imaging techniques such as dGEMRIC to guide clinical decision making.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To investigate the reproducibility of dGEMRIC in the assessment of cartilage health of the adult asymptomatic hip joint. MATERIALS AND METHODS: Fifteen asymptomatic volunteers (mean age, 26.3 years +/- 3.0) were preliminarily studied. Any volunteer that was incidentally diagnosed with damaged cartilage on MRI (n = 5) was excluded. Ten patients that had no evidence of prior cartilage damage (mean age, 26.2 years +/- 3.4) were evaluated further in this study. The reproducibility of dGEMRIC was assessed with two T1(Gd) exams performed 4 weeks apart in these volunteers. The protocol involved an initial standard MRI to confirm healthy cartilage, which was then followed by dGEMRIC. The second scan included only the repeat dGEMRIC. Region of interest (ROI) analyses for T1(Gd)-measurement was performed in seven radial reformats. Statistical analysis included the student's t-test and intra-class correlation (ICC) measurement to assess reproducibility. RESULTS: Overall 70 ROIs were studied. Mean cartilage T1(Gd) values at various loci ranged from 560.9 ms to 684.4 ms at the first set of readings and 551.5 ms to 662.2 ms in the second one. The mean difference per region of interest between the two T1(Gd)-measurements ranged from 21.4 ms (3.7%) to 45.0 ms (6.8%), which was not found to be statistically significant (P = 0.153). There was a high reproducibility detected (ICC range, 0.667-0.915). Intra- and Inter-observer analyses proved a high agreement for T1(Gd) assessment (0.973 and 0.932). CONCLUSION: We found dGEMRIC to be a reliable tool in the assessment of cartilage health status in adult hip joints.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to assess if delayed gadolinium MRI of cartilage using postcontrast T(1) (T(1Gd)) is sufficient for evaluating cartilage damage in femoroacetabular impingement without using noncontrast values (T(10)). T(1Gd) and DeltaR(1) (1/T(1Gd) - 1/T(10)) that include noncontrast T(1) measurements were studied in two grades of osteoarthritis and in a control group of asymptomatic young-adult volunteers. Differences between T(1Gd) and DeltaR(1) values for femoroacetabular impingement patients and volunteers were compared. There was a very high correlation between T(1Gd) and DeltaR(1) in all study groups. In the study cohort with Tonnis grade 0, correlation (r) was -0.95 and -0.89 with Tonnis grade 1 and -0.88 in asymptomatic volunteers, being statistically significant (P < 0.001) for all groups. For both T(1Gd) and DeltaR(1), a statistically significant difference was noted between patients and control group. Significant difference was also noted for both T(1Gd) and DeltaR(1) between the patients with Tonnis grade 0 osteoarthritis and those with grade 1 changes. Our results prove a linear correlation between T(1Gd) and DeltaR(1), suggesting that T(1Gd) assessment is sufficient for the clinical utility of delayed gadolinium MRI of cartilage in this setting and additional time-consuming T(10) evaluation may not be needed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study defines the feasibility of utilizing three-dimensional (3D) gradient-echo (GRE) MRI at 1.5T for T(2)* mapping to assess hip joint cartilage degenerative changes using standard morphological MR grading while comparing it to delayed gadolinium-enhanced MRI of cartilage (dGEMRIC). MRI was obtained from 10 asymptomatic young adult volunteers and 33 patients with symptomatic femoroacetabular impingement (FAI). The protocol included T(2)* mapping without gadolinium-enhancement utilizing a 3D-GRE sequence with six echoes, and after gadolinium injection, routine hip sequences, and a dual-flip-angle 3D-GRE sequence for dGEMRIC T(1) mapping. Cartilage was classified as normal, with mild changes, or with severe degenerative changes based on morphological MRI. T(1) and T(2)* findings were subsequently correlated. There were significant differences between volunteers and patients in normally-rated cartilage only for T(1) values. Both T(1) and T(2)* values decreased significantly with the various grades of cartilage damage. There was a statistically significant correlation between standard MRI and T(2)* (T(1)) (P < 0.05). High intraclass correlation was noted for both T(1) and T(2)*. Correlation factor was 0.860 to 0.954 (T(2)*-T(1) intraobserver) and 0.826 to 0.867 (T(2)*-T(1) interobserver). It is feasible to gather further information about cartilage status within the hip joint using GRE T(2)* mapping at 1.5T.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Factors such as instability and impingement lead to early cartilage damage and osteoarthritis of the hip joint. The surgical outcome of joint-preserving surgery about the hip joint depends on the preoperative quality of joint cartilage.For in vivo evaluation of cartilage quality, different biochemically sensitive magnetic resonance imaging (MRI) procedures have been tested, some of which have the potential of inducing a paradigm shift in the evaluation and treatment of cartilage damage and early osteoarthritis.Instead of reacting to late sequelae in a palliative way, physicians could assess cartilage damage early on, and the treatment intensity could be adequate and based on the disease stage. Furthermore, the efficiency of different therapeutic interventions could be evaluated and monitored.This article reviews the recent application of delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) and discusses its use for assessing cartilage quality in the hip joint. dGEMRIC is more sensitive to early cartilage changes in osteoarthritis than are radiographic measures and might be a helpful tool for assessing cartilage quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soft tissue damage has been observed in hip joints with pathological geometries. Our primary goal was to study the relationship between morphological variations of the bony components of the hip and resultant stresses within the soft tissues of the joint during routine daily activities. The secondary goal was to find the range of morphological parameters in which stresses are minimized. Computational models of normal and pathological joints were developed based on variations of morphological parameters of the femoral head (Alpha angle) and acetabulum (CE angle). The Alpha angle was varied between 40 degrees (normal joint) and 80 degrees (cam joint). The CE angle was varied between 0 degrees (dysplastic joint) and 40 degrees (pincer joint). Dynamic loads and motions for walking and standing to sitting were applied to all joint configurations. Contact pressures and stresses were calculated and crosscompared to evaluate the influence of morphology. The stresses in the soft tissues depended strongly on the head and acetabular geometry. For the dysplastic joint, walking produced high acetabular rim stresses. Conversely, for impinging joints, standing-to-sitting activities that involved extensive motion were critical, inducing excessive distortion and shearing of the tissue-bone interface. Zones with high von Mises stresses corresponded with clinically observed damage zones in the acetabular cartilage and labrum. Hip joint morphological parameters that minimized were 20 degrees